Hendra Tiasmoro¹, Soerjandani Priantoro Machmoed²

¹Mahasiswa Program Studi Teknik Sipil, Fakultas Teknik, UWKS.

²Dosen Program Studi Teknik Sipil, Fakultas Teknik, UWKS.

Program Studi Teknik Sipil, Fakultas Teknik Univrsitas Wijaya Kusuma Surabaya
Jl. Dukuh Kupang XX No. 54, Kota Surabaya, 60225, Jawa Timur, Indonesia
Email:

¹hendra.tiasmoro@gmail.com & ²soerjandani@uwks.ac.id

Abstrak. Struktur gedung apartemen Soedono direncanakan menggunakan beton bertulang dengan metode SRPMK di daerah berintensitas gempa tinggi. Panjang bangunan adalah 45 meter dan lebar 18 meter berbentuk "L" di kota Palu yang terdiri dari 10 lantai dan satu atap. Lokasi gedung berada di wilayah gempa tinggi dan harus direncanakan tahan gempa sesuai SNI 2847 – 2013 dan 1726 – 2012 Metode perhitungan pembebanan gempa adalah analisa respon spectrum dan pembebanan gravitasi yang dikombinasikan pada analisa SAP 2000 v 14 untuk mencari gaya dalam. Perencanaan kolom dan sloof dibantu oleh PCACOL sehingga mendapatkan dimensi yang sesuai dan dikontrol menggunakan SNI 2847 - 2013.

Pada perencanaan gedung apartemen ini diperoleh jenis tanah kota Palu adalah tanah lunak, simpangan horisontal terbesar 71,2 mm dengan syarat maksimal simpangan ijin sebesar 80 mm, rasio penulangan kolom K1 sebesar 2,75 %, T-Rayleigh Ta = 1,28 detik < 3,5 Trx = 5,40 detik. Persyaratan strong coloumn weak beam $\Sigma M_{nc} = 3087,6$ kNm $\geq (1,2)\Sigma M_{nb} = 2082,4$ kNm. Hasil dari perencanaan gedung apartemen dengan metode SRPMK telah telah sesuai dengan peraturan dan persyaratan SNI 2847 - 2013 dan SNI 1726 - 2012.

Kata kunci: Struktur Beton Bertulang, SRPMK, Struktur Tahan Gempa, Perencanaan Gedung

1. PENDAHULUAN

1.1 Latar Belakang

Indonesia adalah negara yang sering dilanda bumi, alam gempa bencana pembangunan harus tetap berlanjut guna untuk meningkatkan pariwisata dan perumahan rakyat sehingga meningkatkan hasil yang maksimal dalam bidang tersebut. pembangunan dalam bidang apartemen, perumahan rakyat dan fasilitas-fasilitas lainnya harus segera di bangun agar masyarakat memiliki hunian yang layak untuk tinggal. Namun wilayah perkotaan yang padat penduduk membuat lahan semakin sempit, sehingga solusi dalam menyediakan tempat tinggal adalah dengan membuat gedung apartemen yang tahan gempa, dikarenakan menurut peta gempa kota Palu termasuk wilayah gempa yang tinggi.

Merencanakan gedung bertingkat disesuaikan dengan intensitas gempa dengan *Peak Ground Acceleration* (PGA), agar nantinya struktur gedung yang direncanakan mampu bertahan pada gaya gempa yang terjadi tepat dibawah kaki gedung. Di dalam Tugas Akhir dijelaskan perencanaan bangunan di kota Palu yang tahan terhadap gempa dengan jumlah 10 lantai dengan menggunakan sistem perencanaan SRPMK dimana bila terjadi gempa ringan, bangunan

tidak boleh mengalami kerusakan pada komponen non struktural maupun pada komponen strukturalnya. Apabila terjadi gempa sedang, bangunan boleh mengalami kerusakan pada strukturalnya, akan tetapi komponen strukturalnya tidak boleh mengalami kerusakan. Apabila terjadi gempa dengan intensitas tinggi, bangunan diijinkan mengalami kerusakan pada komponen non struktural maupun komponen struktural, akan tetapi penghuni gedung memiliki waktu menyelamatkan diri (Napolea 2016).

1.1 Rumusan masalah

Dapat di simpulkan, permasalahan dalam perencanaan struktur gedung apartemen ini :

- Bagaimana cara merencanakan apartemen 10 lantai menggunakan SRPMK untuk menhasilkan dimensi struktur sesuai dengan SNI 2847 2013 ?
- 2. Apakah simpangan gedung yang direncanakan telah memenuhi persyaratan bangunan tahan gempa sesuai dengan peraturan SNI 1726 2012 ?
- 3. Apakah pendetailan struktur gedung menggunakan metode SRPMK sudah memenuhi persyaratan pada SNI 2847 2013?

(Hendra Tiasmoro, Soerjandani Priantoro Machmoed)

1.2 Tujuan

Tujuan dari penulisan ini adalah merencanakan komponen struktur gedung beton bertulang tahan gempa dengan Sistem Rangka Pemikul Momen Khusus bertulang berdasarkan peraturan SNI 2847-2013 dan SNI 1726-2012

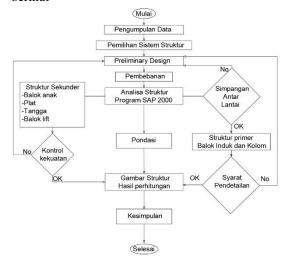
1.3 Manfaat

1) Untuk penulis

Manfaat dari penyusunan Tugas Akhir ini bagi penulis adalah sejauh mana penulis memahami materi megenai perencanaan gedung sehingga dapat diterapkan pada sebuah perencanaan

2) Bagi pihak lain

Memberikan pembaca pengetahuan mengenai tata cara merencanakan gedung dengan metode SRPMK


1.4 Batasan Masalah

Untuk menghindari melebarnya pebahasan agar fokus di perencanaan gedung, pada penulisan ini maka diberi batasan sebagai berikut ini :

- 1. Tidak menghitung Biaya Bangunan
- 2. Tidak meninjau drainase, instalasi kelistrikan, arsitektur ,manajemen konstruksi dan pelaksanaan dilapangan.

2. METEDOLOGI PERENCANAAN

Perencanaan struktur gedung apartemen Soedono di kota Palu menggunakan metode SRPMK di uraikan dalam diagram sebagai berikut

Gambar 1. Bagan Alir Proses Perencanaan

3. HASIL DAN PEMBAHASAN

3.1 Preliminary Design

Preliminary design merupakan tahap awal dalam perencanaan suatu bangunan.

Preliminary design berfungsi untuk perkiraan besarnya dimensi pada struktur primer dan struktur skunder yang akan digunakan. Dengan menggunakan *Preliminary design* bertujuan agar dimensi yang direncanakan tidak terlalu besar ataupun kecil.

Dimensi profil rencana yang digunakan dalam perencanaan adalah :

Kolom : 750 x 750 mm

Balok Induk B1 : 400 x 600 mm

Balok Induk B2 : 400 x 600 mm

Balok Anak B3 atap : 300 x 450 mm

Balok Anak B3 lantai : 300 x 450 mm

Mutu beton : 21 MPa

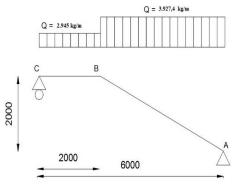
Mutu baja : 410 MPa

Dimensi tersebut telah dihitung dan di kontrol dengan beberapa persyaratan, adapun peraturan yang dijadikan dasar dalam menentukan beban dari komponen struktur menggunakan PPIUG 1983

3.2 STRUKTUR SEKUNDER

Struktur sekunder adalah struktur yang dirancang hanya menerima gaya gravitasi saja dan tidak dirancang untuk menerima gaya lateral gempa, sehingga dalam perhitungan analisanya bisa dihitung secara terpisah dengan struktur utama. Namun struktur sekunder ini tetap mempengaruhi dan menjadi beban bagi struktur utama.

3.2.1 Perencanaan Pelat


Pelat atap yang dibebani sesuai dengan peraturan PPI 1983 dengan ketebalan 100 mm dan dihitung nilai momennya menggunakan PBI 1971 didapat tulangan arah X sebesar D10 – 100 mm dan Y sebesar D10 – 50 mm.

Pelat lantai yang dibebani sesuai dengan peraturan PPI 1983 dengan ketebalan 120 mm dan dihitung nilai momennya menggunakan PBI 1971 didapat tulangan arah X sebesar D10 – 100 mm dan Y sebesar D10 – 50 mm.

3.2.2 Perencanaan Tangga

Data perencanaan tangga adalah:

Beda tinggi lantai = 400 cm Panjang Bordes = 315 cm Tinggi injakan = 20 cm Lebar injakan = 40 cm

Gambar 2. Statika tangga

Untuk mencari gaya dalam dari statika tersebut dibantu oleh program SAP 2000 didapatkan pelat bordes sebesar 2634,11 kgm dan pelat miring sebesar 6563,25 kgm dan didapat tulangan pelat bordes dan pelat miring sebesar D16-50 mm.

3.2.3 Perencanaan Balok B3

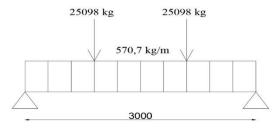
Data-Data perencanaan

 $\begin{array}{ll} \text{Mutu beton} & = 21 \text{ Mpa} \\ \text{Mutu baja} & = 410 \text{ Mpa} \\ \text{Diameter tulangan} & = D 18 \\ \text{Diameter sengkang} & = D 10 \end{array}$

Dimensi balok bordes = 300 x 400 mm Dari perhitungan beban dan analisa struktur didapatkan detail balok sebagai berikut :

TUMPUAN	360 B
TULANGAN ATAS	12D18
TULANGAN BAWAH	6D18
SENGKANG	3D10 - 100
LAPANGAN	\$ 300
TULANGAN ATAS	4D18
TULANGAN BAWAH	7D18
SENGKANG	3D10 - 150

Gambar 3. Detail B3 Atap


Gambar 4. Detail B3 lantai

3.2.4 Perencanaan Balok Lift

Data-Data perencanaan

 $\begin{array}{lll} \text{Mutu beton} & = 21 \text{ Mpa} \\ \text{Mutu baja} & = 410 \text{ Mpa} \\ \text{Diameter tulangan} & = D 18 \\ \text{Diameter sengkang} & = D 10 \end{array}$

Dimensi balok bordes = 300 x 450 mm Dalam perencanaan balok lift ada beberapa beban pertama beban mati, beban akibat koefisien kejut, beban hidup yang diambil dari jumlah maksimal daya angkut penumpang

Gambar 4. Statika Balok Lift

Dari statika tersebut untuk menentukan gaya dalam dibantu program bantu SAP 2000 dan didapatkan detail tulangan sebagai berikut

(Hendra Tiasmoro, Soerjandani Priantoro Machmoed)

Gambar 5. Detail Balok Lift

4. STRUKTUR PRIMER

Struktur primer terdiri dari balok induk dan kolom. Untuk merencanakan struktur primer harus mencari berat total gedung .Berat gedung dicari dengan cara mengkalikan volume dengan berat jenis

Berikut ini adalah perhitungan berat total gedung:

Lantai 1 sampai 9 ($W_1 = W_2 = W_3 = W_4 = W_5 = W_6 = W_7 = W_8 = W_9$) 1.739.913 kg

Lantai 10 (W_{10})= 952.125 kg

Berat total keseluruhan gedung $W_1+W_2+W_3+W_4+W_5+W_6+W_7+W_8+W_9+W_{10}=(9\ x\ 1.739.913)+952.125=$ **16.611.342,2 kg.**

4.1 Menentukan jenis tanah

Layer	thickness (di) meter	description	value SPT	di/value SPT
1	1	clay, brown, some salt, sand	5	0,2
2	3	clay, brown, inorganic, some sand, some sand	6	0,5
3	5	clay, brown, inorganic, some sand, some slit,trace sand, medium	7	0,714286
4	6	clay, grey, inorganic, some slit, trace sand, medium	10	0,6
5	6	clay, grey, inorganic, some slit, trace sand, medium	9	0,666667
6	7	sand, grey, traqce slit, medium	14	0,642857
			total	3,32381

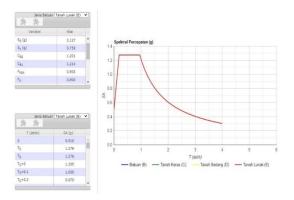
$$\overline{N} = \frac{\sum_{i=1}^{n} di}{\sum_{i=1}^{n} di/ni} = \frac{28}{3.32} = 8,43$$

Dikarenakan nilai $\overline{N} \le 15$ maka tanah tersebut termasuk dalam kategori tanah lunak SE

Periode pendekatan fundamental (Ta) dapat ditentukan dari rumus berikut :

 $Ta = Ct \times h_n^x$

Keterangan:


h_n = tinggi gedung dari lantai dasar

x = 0.9 untuk SRPMK (1726 – 2012)

Ct= 0,0466 untuk SRPMK (1726 – 2012) Maka nilai Ta = 0,0466 x 40 ^{0,9} = 1,28 detik

4.2 Menentukan respon spektrum

Untuk mencari respon spektra di kota Palu Sulawesi Tengah dapat menggunakan bantuan http://puskim.pu.go.id/Aplikasi/desain spektra indonesia 2011/

Gambar 6. Respon Spektrum Kota Palu

4.3 Distribusi beban gempa

Beban gempa dasar (V) yang sudah diketahui maka di distribusikan kepada tiap lantai yang disimbolkan F_i

disimbolkan
$$F_i$$

$$F_i = \frac{W_{i \times Z_i}^k}{\sum_{i=1}^n W_{i \times Z_i}^k} \times V$$

F_i = gaya gempa nominal statik ekivalen

Wi= berat gedung lantai ke i

Zi = tinggi gedung diukur dari penjepit lateral

K = eksponen periode , Ta<0,5 maka k=1, Ta>0.5 maka k= 2

Lantai	V	Z_i	W_i	K	$W_i \times Z_i^k$	Fx = Fy
atap	1.436.375	40	555.430	2	888688000	176718
10	1.436.375	36	1.389.170	2	1800364320	358008
9	1.436.375	32	1.389.170	2	1422510080	282870
8	1.436.375	28	1.389.170	2	1089109280	216573
7	1.436.375	24	1.389.170	2	800161920	159115
6	1.436.375	20	1.389.170	2	555668000	110496
5	1.436.375	16	1.389.170	2	355627520	70717,6
4	1.436.375	12	1.389.170	2	200040480	39778,6
3	1.436.375	8	1.389.170	2	88906880	17679,4
2	1.436.375	4	1.389.170	2	22226720	4419,85

Gambar 7. Gedung Induk

lantai	V	Zi	Wi	K	Wi x Zik	Fx = Fy
atap	836.873	40	674.365	2	1078984000	196640,6
10	836.873	36	770.397	2	998434512	181960,8
9	836.873	32	770.397	2	788886528	143771,5
8	836.873	28	770.397	2	603991248	110075,0
7	836.873	24	770.397	2	443748672	80871,5
6	836.873	20	770.397	2	308158800	56160,7
5	836.873	16	770.397	2	197221632	35942,9
4	836.873	12	770.397	2	110937168	20217,9
3	836.873	8	770.397	2	49305408	8985,7
2	836.873	4	770.397	2	12326352	2246,4

Gambar 8. Gedung Sayap

4.4 Batas Simpangan Lantai

Simpangan antar lantai struktur gedung akibat pengaruh gempa rencana dalam kondisi struktur gedung diambang keruntuhan, yaitu untuk mambatasi kemungkinan terjadinya keruntuhan struktur gedung yang dapat menimbulkan korban jiwa manusia dan untuk mencegah benturan antar gedung

T	δ_{xe}		δ	X	Syarat	77.
Lantai	X	Y	X	Y	(mm)	Ket
atap	85,89232	84,2631	14,15767	12,16124	80	Aman
10	83,3182	82,05196	23,95437	5,837618	80	Aman
9	78,96286	80,99058	27,13752	41,7911	80	Aman
8	74,02876	73,3922	46,43752	53,23385	80	Aman
7	65,58557	63,71331	55,18263	54,79016	80	Aman
6	55,55237	53,75147	62,63468	64,91669	80	Aman
5	44,16425	41,94843	68,39713	66,31474	80	Aman
4	31,7284	29,89121	71,15648	68,95696	80	Aman
3	18,79086	17,35358	66,48248	62,24197	80	Aman
2	6,703138	6,036854	36,86726	33,2027	80	Aman
1	0	0	0	0	80	Aman

Gambar 9. Simpangan Gedung

Gambar 10. Permodelan Struktur

4.5 Perencanaan Balok B1

Perencanaan balok induk B1 dengan cara mencari momen-momen yang terjadi pada setiap balok induk, momen pada balok induk B1 didapat dari output program bantu SAP 2000 dan harus diambil satu balok dengan momen yang paling besar.

Tabel 1. Rekapitulasi gaya dalam		
Momen	62609,22 kgm	
Tumpuan		
Momen	38818,64 kgm	
Lapangan		
Geser Tumpuan	30661,21 kg	

Setelah dihitumg dan dikontrol menggunakan SNI 2847 didapat detail sebagai berikut :

TUMPUAN 400 X 600	
TULANGAN ATAS	12D25
TULANGAN BAWAH	7D25
TULANGAN TENGAH	2D10
SENGKANG	3D16-130
LAPANGAN 400 X 600	
	4D25
400 X 600	
400 X 600 TULANGAN ATAS	4D25

Gambar 11. Detail B1

(Hendra Tiasmoro, Soerjandani Priantoro Machmoed)

4.6 Perencanaan Balok B1

Perencanaan balok induk B2 dengan cara mencari momen-momen yang terjadi pada setiap balok induk, momen pada balok induk B2 didapat dari output program bantu SAP 2000 dan harus diambil satu balok dengan momen yang paling besar.

Tabel 2. Gaya Dalam Pada Balok

Tabel 2. Gaya Dai	ani i ada Dalok
Daerah Tumpuan	66503,6 kgm
Daerah Lapangan	13431 kgm
Geser Tumpuan	45151,6 kg

Perhitungan B2 sama seperti B1 hanya nilai gaya dalam yang dihasilkan oleh SAP 2000 berbeda. Dan didapatkan hasil detail yang telah dikontrol menggunakan SNI 2847 tahun 2013 sebagai berikut

TUMPUAN 400 X 600	
TULANGAN ATAS	11D25
TULANGAN BAWAH	6D25
TULANGAN TENGAH	2D10
SENGKANG	3D16-130
LAPANGAN	
400 X 600	0000
400 X 600 TULANGAN ATAS	3D25
TULANGAN ATAS	3D25

Gambar 12. Detail B2

4.7 Perencanaan Kolom K1

Perencanaan perkiraan dimensi kolom kuat balok lemah K1 dengan bentang 600 cm sebagai berikut:

berkut:
$$\frac{E_c \times I_{kolom}}{L_{kolom}} \ge \frac{E_c \times I_{Balok}}{L_{Balok}}$$

$$\frac{(\frac{1}{12} \times b \times h^3)_{kolom}}{L_{kolom}} \ge \frac{(\frac{1}{12} \times b \times h^3)_{Balok}}{L_{Balok}}$$

$$\frac{(\frac{1}{12} \times h^4)}{600} \ge \frac{(\frac{1}{12} \times 40 \times 60^3)}{600}$$

$$h \ge \sqrt[4]{8640000} = 54,2$$
dipakai ukuran kolom (K1) = 75 x 75 cm

4.8 Menentukan sway atau non sway

- Pu = 6.548.890,4 N - Vu = 356.134,9 N - M2 = 89849,63 kgm - M1 = 83334,85 kgm - Δo = 4,2 mm $Q = \frac{Pu \times \Delta o}{Vu \times Lc} < 0.05$ $Q = \frac{6.548.890,4 \times 4.2}{356.134,9 \times 4000} < 0.05$ Q = 0.019 < 0.05 (kolom K1 termasuk non sway)

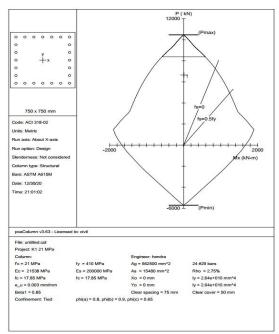
4.9 Menentukan panjang tekuk

- Kolom $I_g = \frac{1}{12} \times 750 \times 750^3 = 26.367.187.500 \text{ mm}^4$ $E_c = 4700 \times \sqrt{21} = 21.538 \text{ N/mm}^2$ - Balok $I_g = \frac{1}{12} \times 400 \times 600^3 = 8.640.000.000 \text{ mm}^4$ $E_c = 4700 \times \sqrt{21} = 21.538 \text{ N/mm}^2$ Untuk menentukan panjang tekuk dari kolom akan diterapkan dengan menggunakan nomogram panjang efektif.

Kolom atas

$$\psi_{A} = \frac{\frac{26.367.187.500}{4000} + \frac{26.367.187.500}{4000}}{\frac{8.640.000.000}{6000} + \frac{8.640.000.000}{6000}}{\frac{8.640.000.000}{6000}}$$

Kolom bawah

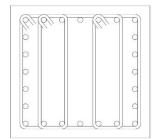

 $\psi_B = 1$ (terjepit penuh)

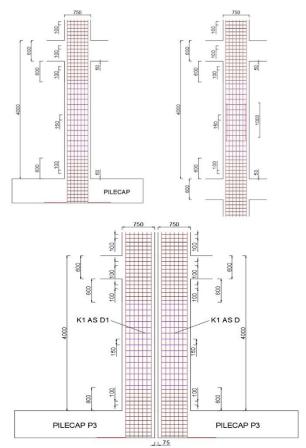
4.10 Menentukan Kelangsingan Kolom

$$\begin{aligned} \frac{\text{k. lu}}{\text{r}} &\leq 34 - 12 \, \left(\frac{\text{M}_1}{\text{M}_2}\right) \\ \frac{(0.85)(4000)}{(0.6 \, \text{x} \, 750)} &\leq 34 - 12 \, \left(\frac{83334.85}{89849.63}\right) \\ 7.5 &\leq 22.88 \quad \text{(tidak perlu chekklengingen)} \end{aligned}$$

kelangsingan)

Perencanaan kolom menggunakan PCACOL dimana jumlah tulangan 24D29



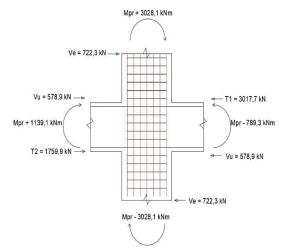

Gambar 13. PCACOL

4.11 Persyaratan Strong Coloumn Weak Beam

Menurut SNI 2847 2013 pasal 21.6.2 mengenai Capasity Design menyatakan $\Sigma M_{nc} \ge (1,2)\Sigma M_{nb}$ perlu dipahami M_{nc} harus dicari gaya gaya aksial terfaktor yang menghasilkan kekuatan lentur terendah dengan arah gempa yang ditinjau. Dalam hal ini yang dipakai hanya kombinasi beban gempa saja guna memeriksa syarat strong coloum weakbeam Persyaratan strong coloum weak beam sesuai dengan SNI 2847 2013 pasal 21.6.2:

$$\Sigma M_{nc} \ge (1,2)\Sigma M_{nb}$$

 $\frac{1024+983}{0,65} \ge 1,2 \text{ x } (\frac{1.388,3}{0,8})$
 $3087,6 \text{ kNm} \ge 2082,4 \text{ kNm (persyaratan oke)}$



Gambar 14. Detail kolom K1

Kontrol HBK terkekang 4 balok

Gaya geser yang terjadi pada hubungan balok dan kolom (HBK) yang terkekang 4 balok adalah $T_1\,+\,T_2\,-\,V_u$. Dimana T_1 dan T_2 diperoleh dari tulangan Tarik dan tulangan tekan pada balok balok yang menyatu pada kolom

Gambar 15. Struktur Kolom

(Hendra Tiasmoro, Soerjandani Priantoro Machmoed)

5. STRUKTUR PONDASI

Pondasi merupakan struktur bagian bawah dari suatu gedung atau bangunan yang berfungsi sebagai meneruskan dan menahan bebann yang bekerja pada struktur bangunan atas agar bangunan dapat berdiri dan juga kokoh akibat gaya lateral dan gravitasi yang terjadi pada suatu struktur.

5.1 Daya Dukung Tiang Pondasi Berdasarkan Kekuatan Bahan

Daya dukung pondasi tiang akan dianalisa berdasarkan dari kekuatan bahan yang digunakan untuk tiang, yaitu menggunakan material beton. Tiang pancang untuk pondasi tipe 1 akan digunakan produksi dari PT. Wika Beton. Berdasarkan spesifikasi dari PT. Wika Beton direncanakan tiang pancang beton:

Dimensi = 50 cm x 50 cmKelas = tipe D =625 kg/mBerat = 31.13 tonmMomen nominal Kuat beban (P tiang) = 325 ton=70 mmTebal selimut beton Kedalaman tiang pancang = 20 m = 21 MPaMutu beton (fc') Mutu baja (fy) = 410 MPa

5.2 Daya Dukung Tiang Pancang Berdasarkan Kekuatan Tanah

Perhitungan daya dukung tiang berdasarkan data hasil sondir daerah kota Palu harus memperhitungkan yang mengalami keruntuhan geser akibar penetrasi konus atau tiang pancang sebagaiberikut

Cn rata – rata ujung =
$$\frac{C.8D + C.4D}{2}$$

Keterangan:

C.8D = harga rata-rata konus, dihitung mulai dari ujung tiang sampai 8D keatas

C.4D = harga rata-rata konus minimum, dihitung mulai dari ujung tiang sampai 4D kebawah

Dari data sondir yang ada, didapat harga-harga konus sebagai berikut :

Untuk 8D = 400 cm keatas dari ujung konus

5.3 Kontrol Beban Maksimum 1 Tiang Pancang Pondasi

Sehingga dapat dihitung P tiap pancang 1

sampai 7 berdasarkan jarak ke sumbu netral :

P1 =
$$\frac{708.7}{7}$$
 - $\frac{84.5 \times 0.625}{9.375}$ + $\frac{89.7 \times 1.25}{6.25}$
= 113.3 ton
P2 = $\frac{708.7}{7}$ + $\frac{84.5 \times 1.25}{9.375}$ = 90 ton
P3 = $\frac{708.7}{7}$ + $\frac{84.5 \times 0.625}{9.375}$ + $\frac{89.7 \times 1.25}{6.25}$
= 124.5 ton

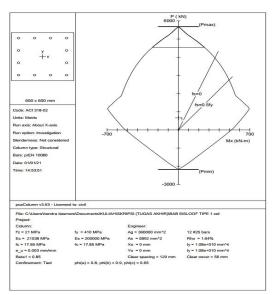
P4 =
$$\frac{708,7}{7}$$
 = 101 ton
P5 = $\frac{708,7}{7}$ - $\frac{84,5 \times 0,625}{9,375}$ - $\frac{89,7 \times 1,25}{6,25}$
= 86,7 ton

P6 =
$$\frac{708,7}{7}$$
 + $\frac{84,582,5 \times 1,25}{6,25}$ = 117,9 ton
P7 = $\frac{708,7}{7}$ + $\frac{84,5 \times 0,625}{9,375}$ - $\frac{89,7 \times 1,25}{6,25}$ = 99,21 ton

Dari perhitungan diatas diperoleh nilai tertinggi pada pancang nomor 3 yaitu sebesar 124,57 ton $P_{maks} = P3 = 124,57 \ ton < P_{ijin} = 151,170 \ ton$

5.4 Penulangan Lentur Sloof

Sloof didasarkan pada kondisi pembebanan dimana beban yang direncanakan adalah beban aksial dan lentur sehingga penulangan seperti penulangann kolom. Analisa penulangan membutuhkan diagram interaksi M-N yang dibantu dengan program komputer PCACOL. Beban yang diterima sloof:


Berat sendiri = $0.6 \times 0.6 \times 2535$ = 912,6 kg/m

Berat dinding = 4×250 = $\frac{1000 \text{ kg/m}}{2000 \text{ kg/m}}$ = 1912,6

kg/m

 Q_u =1,4 D = 1,4 x 1912,6 = 2677,6 kg/m Dari beban ultimate tersebut maka nilai momen dapat dicari :

 $Mu = \frac{1}{8} \cdot q_u \cdot l^2 = \frac{1}{8} \cdot 2677, 6.6^2 = 12.049 \text{ kgm}$ Hasil analisa program bantu PCACOL didapat nilai $\rho = 1,64 \%$ dan tulangan 12D25

Gambar 16. Diagram Sloof

6. KESIMPULAN

Hasil analisa kontrol simpangan struktur disimpulkan bahwa simpangan gedung induk dan sayap yang terjadi kurang dari simpangan ijin 71,15 mm < 80 mm dan 71,6 mm < 80 mm sehingga perencanaan gedung ini telah memenuhi salah satu syarat bangunan tahan gempa.

Hasil perhitungan untuk pendetailan sesuai dengan SNI 2847 tahun 2013 pasal 21 sampai 23 telah terpenuhi sehingga struktur gedung ini telah mampu menahan beban gempa.

Hasil analisa kontrol strong coloumn weak beam dimana $\Sigma M_{nc} \geq (1,2)\Sigma M_{nb}$ diperoleh momen kolom 3087,6 kNm lebih besar dari momen balok 2082,4 kNm, sehingga struktur bangunan apartemen Soedono mampu menahan beban gempa yang diterima.

DAFTAR PUSTAKA

Badan Standardisasi Nasional. "SNI 2847-2013 Persyaratan Beton Struktural Untuk BangunanGedung." Badan Standardisasi Nasional " (2013).

Badan Standardisasi Nasional. "Tata cara perencanaan ketahanan gempa untuk

struktur bangunan gedung dan non gedung." SNI 1726 (2012): 2012.

Badan Standardisasi Nasional. "SNI 1727-2013 Beban Minimum Untuk Perencanaan GedungdanStruktur Lain." *Departemen Pekerjaan Umum* (2013).

ISNEINI,Mohd. Kerusakan dan Perkuatan Struktur Beton Bertulang. *Rekayasa: Jurnal Ilmiah Fakultas Teknik Universitas Lampung*, 2009, 13.3: 259-270.

Komputer, Wahana. Panduan Praktis Analisis Struktur Bangunan dan Gedung dengan SAP 2000 versi 14. Penerbit Andi, 2010.

NAWY, Edward G.; SURJAMAN, Tjun; SURYOATMONO, Bambang. Beton Bertulang: Suatu Pendekatan Dasar. PT. Eresco, Bandung, 1990.

Sasmito, D. H. (2017). Modifikasi perencanaan struktur Gedung Kantor Graha Atmaja dengan Metode Dual System di Daerah Resiko Gempa Tinggi (Doctoral dissertation, Institut Teknologi Sepuluh Nopember).

SULISTIO,Gunawan;PADANG,StephenFransis co. Efektivitas corrosion inhibitor ferrogard 903 pada beton bertulang di lingkungan agresif. 2004. PhD Thesis. Petra Christian University.

Utomo, Pontjo. "Daya Dukung Ultimit Pondasi Dangkal Di Atas Tanah Pasir Yang Diperkuat Geogrid." *Civil engineering dimension* 6.1 (2004): 15-20.

Wahono, Arif. "Perencanaan Struktur Beton Bertulang Dengan Menggunakan Software SAP 90 dan Staad Pro Dalam Kajian Struktur Portal Dua Dimensi." *Jurnal Ilmu-Ilmu Teknik* 11 (2015).

WIKANA, Iwan; WIDAYAT, Yohanes.
Tinjauan Kuat Lentur Balok Beton
Bertulang dengan Lapisan Mutu Beton
yang Berbeda. *Majalah Ilmiah UKRIM. Edisi*, 2007, 2.

(Hendra Tiasmoro, Soerjandani Priantoro Machmoed)

Halaman ini sengaja dikosongkan

Halaman ini sengaja dikosongkan