REDUCTION IN EXPORT DUTY AND ITS IMPLICATION TO THE MALAYSIAN PALM OIL INDUSTRY¹

Oleh: DR. Ernawati,²

ABSTRAK

Dengan menggunakan data seri masa pada periode 1969-2001, kajian ini menggunakan pendekatan ekonometrik terutama dengan pendekatan "error correction model". Kajian ini bertujuan untuk menguji dampak dari perubahan kebijakan perdagangan bebas (AFTA-penurunan pajak ekspor) terhadap Industri kelapa sawit Malaysia melalui simulasi kebijakan penurunan pajak ekspor sebesar 10, 30, 50 dan 100 persen.

Hasil simulasi menunjukkan bahwa dampak langsung dari kebijakan perdagangan bebas-penurunan pajak eksport ini akan meningkatkan harga minyak sawit domestik dan penurunan harga minyak sawit dunia, yang pada akhirnya berdampak pada kondisi industri minyak sawit dalam negeri (Malaysia) yaitu peningkatan luas areal tanam, luas areal kelapa sawit yang dipanen, produktivitas minyak sawit, dan ekspor minyak sawit.

Analisis kesejahteraan menunjukkan bahwa kebijakan penurunan pajak ekspor akan dinikmati oleh produsen yang ditunjukkan oleh peningkatan dalam "produsen surplus" sementara yang menanggung kerugian dari kebijakan penurunan pajak ekspor adalah konsumen yang ditunjukkan oleh penurunan di dalam "konsumen surplus" dan juga pemerintah.

Kata Kunci: AFTA-penurunan pajak ekspor, harga, luas areal tanam, luas areal panen, produktivitas dan ekspor minyak.

INTRODUCTION

The arguments that trade liberalization increased welfare in the economies adopting it still remain debatable. Many researchers have agreed that the term trade liberalization should permit specialization, efficiency gains and increase trade. Trade liberalization should reduce distortions; Robinson and De Rosa (1995), Thomas F. Rutherford and David G. Tarr (1997), Feridhanusetyawan (1998), Feridhanusetyawan (1999) and Kazarian and Ames (2000). Meanwhile, international trade theory suggested that trade liberalization could improve the welfare of member countries if total volume of trade by those countries increased; through trade creation exceeding trade diversion from nonmember countries.

¹ Paper submitted to "Perspective Journal" University Brunei Darussalam

² Lecturer, Faculty of Economics and Management Wijaya Kusuma University

In this paper, the concept of partial equilibrium consumer and producer surpluses is used to analyze economic gains and losses for the Malaysian palm oil industry from the changes in trade liberalization policies. Consumer surplus refers to the area above the equilibrium price line but below the demand curve. It represent the difference between the amount consumers are willing to pay for a given quantity of good and the amount they actually have to pay before receiving that given quantity. Producer surplus refers to the area below the equilibrium price line but above the supply curve. It represents the difference between the total revenue received by producers for producing a given quantity and the total costs incurred to produce that given quantity.

Hence, this study is an attempt to examine welfare effect of trade liberalization policy changes-the reduction in export duty. This study is useful since many of palm oil study were conducted, but none of them focused to see the welfare effect. For example, Lubis, A. (1994), Shamsuddin, M.N. et al (1994) and Susila, W.R. (1996) focused on palm oil modeling. Meanwhile, Dradjat, B. et al., (1994), Simatupang and Purwanto (1995), and Sumaryanto and Rantenata, (1996) focused on the domestic demand for palm oil in Malaysia. Among of them tried to see the impacts of government policy such as Larson, D. F. (1996), and Shamsuddin, M. N. et al (1997). Suryana, A (1986), Tondok, A. R. (1998), Ibrahim, A. (1999), Basiron, Y. (2001) also focused on the factors affecting the palm oil industry including the policy variable.

Furthermore, the usefulness of this study is in that it can indicate to planners and policy makers the favourable impact or otherwise arising from the arising from the reduction of export duty and import tariff on palm oil industry, one of the country's primary commodity exports.

CONCEPTUAL FRAMEWORK

A graphical exposition on the effect of trade liberalization - reduction of export tax - on the Malaysian palm oil industry is shown in Figure 1. With the presence of export tax, the world trade equilibrium is determined by the intersection of the world excess supply curve (ES_w^*) with the world excess demand curve (ED_w) for palm oil (panel F).

The ES_w^* is the summation of Malaysia's and the rest of the world's export, and the ED_w is the summation of imports by all importing countries. The Quantity traded is Q_w^* and the world price is P_w^* . The quantity of palm oil exported by Malaysia and the rest of the world is Q_{IX}^* and Q_{XROW}^* in panel B and C respectively. The price paid by the importers of the Malaysia palm oil is P_w^* and the price received by the Malaysian producer P_1^* . The difference between P_W^* and P_I^* is the amount of export duty per ton. As shown in panel B, the burden of the tax is shared by both the producers and importers (assuming that the import demand curve faced by the Malaysian producers is not perfectly elastic). Malaysian production of CPO is Q_{SI}^* and domestic consumption is Q_{CI}^* .

With the liberalization of the Malaysian export duty on CPO, the Malaysian excess supply curve shifts from ES_I^* to ES_I by the amount of the levy. This will cause a shift in the world excess supply curve from ES_W^* to ES_W and a decline in the world price from P_W^* to P_W . In the free trade situation (without the Malaysian export duty on CPO) the export and domestic prices on the Malaysian domestic and export markets is equal to P_W . The amount of export increases from Q_{IX}^* to Q_{IX} . The domestic supply increases from Q_{SI}^* to Q_{SI} and the domestic utilization decline from Q_{CI}^* to Q_{CI} .

METHOD

A number of studies have been carried out to analyse the palm oil market in Indonesia and Malaysia. The notables ones are: Lubis (1994), Shamsuddin et al., .(1994) and Susila (1996) which examined supply demand system of the Malaysian palm oil. Dradjat et al. (1994), simatupang and Purwanto (1995), and Sumaryanto and Rantenata (1996) investigated the domestic demand for palm oil in Indonesia. Larson (1996), and Shamsuddin et al. (1997) examined the determinants and implications of policy instruments on the Indonesian and Malaysian palm oil market respectively. Suryana (1986), Tondok, (1998), Ibrahim (1999), Basiron (2001) examined the prospect of palm oil in the international market in the case of both Indonesia and Malaysia.

These studies however address the stationarity problem of time series data which might render the resulting regression coefficients as spurious. According to Engle and Granger (1987) if non-stationary time series variables are not cointegrated, then they have no long-term relationship. Co-integration, introduced by Granger (1981), is relevant to the problem of the determination of long-run or 'equilibrium' relationships in economics. The basic idea behind co-integration is that if, in the long run, two or more series move closely together, even though the series themselves are trended, the difference between them is constant. It is possible to regard these series as defining a long-run equilibrium relationship, as the difference between them is stationary (Hall and Henry, 1989). A lack of co-integration suggests that such variables have no long-run relationship: in principal they can wander arbitrarily far away from each other (Dickey, 1991). Existence of a high degree of correlation between two variables does not mean there is a causal relationship between the variables. For example, a high R may only indicate correlated trends and it is not the implication of a real economic relationship. To remedy this problem, the co-integration technique and error correction modeling are recommended (Bahmani-Oskooee and Alse, 1993).

Some recent studies have confirmed the existence of a co-integrating longrun relationship between the agricultural commodity and economic variables, such as McKay (1998), Angulo and Zapata (2000), Warr and Wollmer (2000), Mushtaq and Dawson (2000), Thompson et al. (2000) and Salih (2001).

Model Specification

The model is based on the assumption that the world palm oil market is at equilibrium. Basically, the equilibrium condition is met when the world excess supply of palm oil is equal to the world excess demand from palm oil. Therefore, the model is divided into two components: (1) world excess supply and (2) the world excess demand. The structural modeling can be seen in Table 1. The model is structured into eleven behavioral equations and it has been applied to supply and demand analysis. Specifically, the model incorporated specific equations for acreage, harvested area, yield, domestic demand, rest of the world excess supply, Malaysian excess demand to India, China, Europe, and rest of the world, rest of the world excess demand and export price.

Equation System	Sign Hypothesis
1. Production of Palm Oil $MQP_t = HA_t * Y_t$	
2. Harvested of palm oil	
$HA_{t} = a_{0} + a_{1}DP_{t-1} + a_{2}LA_{t} + a_{3}HA_{t-1} + U_{1}$ 3. Acreages of palm oil	a ₁ >0;a ₂ <0; 0< a ₃ <1
$LA_{t} = b_{0} + b_{1}DP_{t-1} + b_{2}PR_{t-1} + b_{3}LA_{t-1} + b_{4}D_{1} + b_{5}D_{2} + b_{$	
$b_6D_3 + U_2$	$b_1 > 0; b_2 < 0; 0 < b_3 < 1$
4. Palm oil yields	
$Y_{i} = c_{0} + c_{1}Trend + c_{2}DP_{i} / PF_{i} + c_{3}Y_{i-1} + U_{3}$	c ₂ >0; 0 <c<sub>3<1</c<sub>
5. Domestic Demand for palm oil	
$MDD_{t} = d_{0} + d_{1}DP_{t} + d_{2}PCO_{t} + d_{3}MIPI + d_{4}POP_{t}$	
$+ d_5 MDD_{t-1} + U_4$	d ₁ <0;

Fable 1:	: Equation	System	of the	Malaysian	Palm	Oil Industry
----------	------------	--------	--------	-----------	------	---------------------

6. Malaysian Excess Supply $MQX_{t} = MQP_{T} - MQDD_{T}$	d ₂ >0; d ₄ <0<1
7. Rest of world excess supply $ROWQX_T = e_0 + e_1WPO_1 + e_2ROWQP_1 + U_5$	
8. World Excess Supply $WQX_t = INDQX_T + ROWQX_T$	$e_{1,}e_{2}>0$
9. Total Export Demand $MXT_{t} = MX_{1t} + MX_{Ct} + MX_{EUt} + MX_{ROWt}$	
10. Export Demand to India $MX_{I_{1}} = f_{0} + f_{1}WPO_{t} + f_{2}PSO_{t} + f_{3}PGO_{t} + f_{4}PRO_{t} + f_{5}IPI_{t}$ $+ f_{6}EX_{t} + f_{7}MX_{I_{t-1}} + U_{6}$	
11. Export Demand to China $MX_{C_1} = g_0 + g_1WPO_1 + g_2PSO_1 + g_3PGO_1 + g_4PRO_1 + g_5IPC_1$	$\begin{array}{l} f_1, f_6 < 0, \\ f_2, f_3, f_3, > 0, \\ 0 < f_5 < 1 \end{array}$
$+g_6 E X_t + g_7 M X_{C_{t-1}} + U_7$	$g_1, g_6 < 0,$ $g_2, g_3, g_3, > 0,$ $0 < \alpha < 1$
12. Export Demand to EU $MX_{EU_{t}} = h_0 + h_1 WPO_t + h_2 PSO_t + h_3 PGO_t + h_4 PRO_t + h_4 PRO_t$	0~85~1
$h_5 IPEU_t + h_6 EX_t + h_7 MX_{EU_{t-1}} + U_8$	$h_1, h_6 < 0, h_2, h_3, h_3, > 0,$
13. Export Demand to Rest of the World $MX_{ROW,t} = i_0 + i_1 WPO_t + i_2 PSO_t + i_3 PGO_t + i_4 PRO_t + i_4 PRO_t$	0 <h5<1< td=""></h5<1<>
$i_5 IPROW_t + i_6 EX_t + i_7 MX_{ROW_{t-1}} + U_9$	$i_{1}, i_{6} < 0, i_{2,i_{3}}, i_{3}, > 0,$
14. Rest of the World Excess Demand $ROWQM_T = j_0 + j_1WPO_T + j_2PSO_T + j_3WGDP_T + U_{10}$	0 < 15 < 1 $j_1 < 0, j_2, j_3 > 0;$
15. World Excess Demand $WQM_T = ROWQM_T + MXT_T$	^{ر ر} لن «مل « مر

16. Export price of Malaysian palm oil $PX_t = k_0 + k_1 WPO_t + U_{10}$ 17. Domestic Price of Malaysian Palm Oil $DP_t + XP_t - XT_t$	$k_1 > 0$
18. World Price of Malaysian Palm Oil if Importing Countries Imposed Tariff $WPO_t^i = PX_t(1+t)$	
19. Closing identity $WQX_T = WQM_T$	

An econometric approach, mainly the error correction model on a simultaneous equation model, was employed in this study to investigate the determinant of economic variable on the Malaysian palm oil industry. Before estimating the model, the two data tests was conducted in this study including the unit root data test using both the standard Augmented Dickey Fuller (ADF) and Phillips-Perron (PP); and the co-integration test using the Johansen procedure.

In order to evaluate the sensitivity of Malaysian palm oil acreage, harvested area, yield, domestic demand, rest of the world excess supply, export demand to Indian, China, Europe, and rest of the world, rest of the world excess demand, export price, domestic price, and world price, the model was simulated starting with the actual domestic price during 1969-2001 as the base condition of pre-trade liberalization to generate the base simulations. Then the model was simulated again by decreasing export duty by 10, 30, 50, and 100 percent. The effects of the export duty reduction are seen by the difference in the simulated values and the base solutions.

The estimated equations are presented in Table 2. The definition of the variables in the estimated equation is shown in Table 3. The estimation results indicate that the model is satisfactory in terms of correct signs and significance of variables concerned.

Table 2: Summary of Estimates of the Equations in the Malaysian Palm OilIndustry Model

	Estimated Equation Results
Variables	
Acreage (LA _{t-1})	$49.45^{**} + 0.06DP_{t-1} - 0.03PR_{t-1} + 0.84^{***}LA_{t-1} + 0.32ECLA_t$

Harvested (HA _{t-1})	-28.83 + 0.098***LA _t + 0.92***HA _{t-1} +0.56***ECH1
Yield (Y_t)	$1.66^{***} + 0.23^{***}DP_{t-2} + 0.30^{***}D + 0.43^{**}Y_{t-1} - 0.43^{**}Y_{t-1}$
	0.05EC2YT
Production (INDQP _t)	$LA_t * HA_{t-1}$
Domestic Demand (DD _t)	$-33.51-1.48**DP_t + 1.26PSO_t + 0.85IPIM_t - 0.57***DD_t - 1 - 0.80**ECMDD$
Malaysian Excess Supply (INDQX _t)	INDQP _t - DD _t
ROW Excess Supply (ROWQX _t)	-4553.67***+2.64WPOt + 86.38**WGDPt - 0.14 ECROWX
World Excess Supply (WQX _t)	$INDQX_t + ROWQX_t$
Export Demand to India (IX_{It})	6.11-5.79** WPO _t + 4.98PSO _t + 136.68**D + 2.25IPI + 11.01ERI + 0.86***IX ₁₋₁ + 14.37IC1IX ₁
Export Demand to China (IX $_{\rm O}$)	-5.76 – 1.70*WPO _t + 3.44***PGO _t + 0.99**IPC +215.81***ERC
	+ 0.31***IX _{C11} - 31.33EC1IXc - 79.32***EC2IX _C
Export Demand to Europe (IX _{EU3})	-1005.66 - 0.98WPO _t + 15.16**PRO _t + 13.85**PSO _t + 1.31 IPEU.
	+ 8.61EREU, + 0.79***IX _{FUT-1} + 140.79***ECIX _{FUT} -
	37.53 EC2X _{EU}
Export Demand to ROW ($IX_{R \oplus W_1}$)	-833.58 - 14.66***WPOt + 12.66**PSOt +
-	$0.54^{***}IX_{ROW(-)} + 21.09ECM1IX_{ROW(-)} + 0.05 ECM2$
	IX _{ROWt}
Total Export Demand (IXT _t)	$IX_{It} + IX_{D} + IX_{EUt} + IX_{ROWt}$
ROW Excess Demand (ROWQM _t)	$-1995.71^* - 10.64$ WPO _t + 11.75PRO _t + 38.02***
	$WGDP_{t} + 0.55***ROWQM_{t-1} + 0.63 ECROWM1$
World Excess Demand (WQM $_{\rm c}$)	$IXT_t + WQM_t$
Export Price of Malaysian PO	36.23** + 0.55*** WPO _t + 0.08***PX _{t-1} + 0.026ECMPX
Domestic Price (DP,)	PX, - XT.
World Price (WPO.)	PX.((+t)
Equilibrium	$WOX_t = WOM_t$
ι.	

Table 3: Definition, Measurement and Data Sources of the Variables Included in the Model

Variables	definition	Measurement	Source of Data
1QP _t	palm oil Supply	000 tonnes	Oil World, MPOB
LA _t	palm oil acreage	000 hectares	Oil World, MPOB
Yt	palm oil productivity	ton/hectare	Oil World, MPOB
OP _{t-1}	lagged of palm oil price	Rupiah/ton	Malaysian Statistic Bureau
		Rupiah/ton	Malaysian Statistic
PR _{t-1}	lagged of rubber price		Bureau
LA_{t-1}	Lagged of palm oil acreage	000 hectares	Oil World

U1 – U9	Error term ratio of palm oil price and	-	-
DPt/DFt	fertilizer price		
Yt-1	lagged of yields palm oil	Ton/hectare	Malaysian Statistic Bureau
	Domestic Demand for Palm	000 tones	Oil World, MPOB
DDt	Oil		
PCOt	coconut oil price	Ringgit/ton	Oil World, MPOB
EA	Economic Activity	-	
POP	Malaysian Population	million people	Malaysian Statistic Bureau
	Lagged of Domestic	000 tones	Oil World,
DD _{t-1}	Demand for Palm Oil		Malaysian Statistic Bureau
	Total Export Demand	000 tones	Oil World,
MX_t	Malaysian palm oil		Malaysian Statistic Bureau
MQX _t	Malaysian excess supply		Oil World,
			Malaysian Statistic Bureau
ROWQX _t		000 tones	Oil World,
DOWOD	rest of world excess supply		Malaysian Statistic Bureau
ROWQPt	Rest of the world supply		Ull World, Moleusian Statistic Dursey
WOY	We life and a second	000 tonos	Oil World
WQX _t	World excess supply		
	Export Demand to India		Oli world, MPOB
MX _{Ct}	Export Demand to China	000 tones	Oil World, MPOB
MX _{EUt}	Export Demand to Europe	000 tones	Oil World, MPOB
	Malaysian Export Demand	000 tones	Oil World, MPOB
MX _{ROW1}	to Rest of the world		
PSOt	world price of soybean oil	USD/ton	World Bank, IMF
DOO	world price of Groundnut	USD/ton	World Bank, IMF
PGO _t	011		
PRO _t	world price of rapeseed oil	USD/ton	World Bank, IMF
IPI _t	Indian industrial production		ASEAN Development
	index		Bank (ADB)
IDI	chinese industrial	-	ADB
	FIL industrial anadustion		
II IEUt	Index		AUB
	ROW industrial production	_	
IPInow	Index	-	ADB
MX	lagged export demand to	000 tones	Oil World
1413 21[-]	India	ooo tones	on world,
			Malaysian Statistic Bureau
	lagged export demand to	000 tones	Oil World
MXcu	China	ooo tones	on wond,
			Malaysian Statistic Bureau
MX	lagged export demand to EU	000 tones	Oil World
LUL-1			Malaysian Statistic Burgon
	lagged export demand to	000 tones	Oil World
MXnow .	ROW	000 101165	

			Malaysian Statistic Bureau
ROWQM _t	Rest of world excess demand	000 tones	Oil World,
			Malaysian Statistic Bureau
WPO _t	World price of palm oil	USD/ton	Malaysian
WGDPt	World GDP		Statistic Bureau, ADB
WQM _t	World excess Demand	000 tones	Oil World, MPOB
			Malaysian Statistic Bureau
PX,	Export price of Malaysia palm oil	USD/ton	Oil World, Malaysian Statistic Bureau
EXt	exchange rate	domestic currency to USD	Malaysian Statistic Bureau
XT _t	export tax	percent	
HAt	harvested area	000 hectares	Oil World, MPOB
			Malaysian Statistic
			Bureau

RESULTS AND DISCUSSION

Reduction in Export Duty

Table 4 presents the historical simulation on the major variables in Malaysia's palm oil industry before and after trade liberalization - reduction of export duty by 10, 30, 50 and 100%. The table shows the comparison between the conditions when the government imposed export duty and the changes of trade liberalization policy reduction in export duty.

From Table 4, due to reduction in export duty by 10% domestic price increased from \$32.56/ton to \$32.22/ton. The domestic consumption decreased from 628.30 thousand tones to 627.31 thousand tones. The negative impact of increasing the domestic price also caused a reduction in the ROW excess supply. It reduced from 2768.64 thousand tones to 2768.47 thousand tones when export duty is reduced by 10%.

Malaysia's Palm Oil Industry Before and After Trade Liberalization – Reduction of Export Duty						
Variables	Based	Re	duction of	Export Dut	у	
	Scenario	10%	30%	50%	100%	
Acreage	1309 75	1309 79	1309.88	1309 92	1309.96	
Harvested	945.27	945.27	945.28	945.29	945.29	

Table 4: Historical Simulation on the Major Variable on

Reduction in Export Duty and its implication (Ernaward)	Reduction	in Expo	rt Duty a	nd Its In	nplication ((Ern <u>awati</u>)
---	-----------	---------	-----------	-----------	--------------	---------------------

Yield	2.28	2.28	2.28	2.28	2.28
Production (Harvested*Yield)	2151.50	2152.57	2154.71	2155.78	2156.84
Domestic Demand	628.30	627.31	625.33	624.34	623.35
Malaysian Excess Supply					
(Production-DD)	1523.20	1525.26	1529.38	1531.44	1533.49
ROW excess supply	2768.64	2768.47	2766.14	2765.97	2761.80
World Excess Supply					
(ESi+ESrow)	4291.84	4293.73	4305.52	4313.41	4331.30
Export demand to India	286.05	295.06	313.07	322.08	331.09
Export demand to China	608.36	611.05	616.42	619.10	621.79
Export demand to Europe	467.88	469.44	472.56	474.11	475.67
Export Demand to ROW	280.26	291.59	316.23	320.37	330.43
Total Export Demand					
(Xi+Xc+Xeu+Xrow)	1532.55	1567.14	1618.28	1635.67	1758.98
ROW excess Demand	2580.11	2596.92	2630.54	2647.35	2664.16
World Excess Demand					
(TEDi+ROWED)	4291.84	4293.73	4305.52	4313.41	4331.30
Export price of Malaysian PO	106.33	105.46	103.73	102.87	102.00
Domestic price	31.56	32.22	33.56	34.23	37.57
World price	103.72	102.14	98.98	97.40	89.50

The positive impact of changes in trade liberalization policy – reduction in export duty – have increased Malaysian palm oil production, Malaysian excess supply, and world excess supply. Malaysian palm oil production have increased from 2151.50 thousand tones to 2152.57 tones when export duty is decreased by 10%. Due to increasing palm oil production, the Malaysian excess supply – which is exported to India, China, Europe and ROW - will increase.

In Table 4 it increased from 1523.20 thousand tones to 1525.26 thousand tones when export duty is reduced by 10%. In the world market, the world excess supply increased from 4291.84 thousand tones to 4293.73 thousand tones when export duty is reduced by 10%. Moreover, Table 4 shows the impact of changes in trade liberalization policy-reduction of export duty by 30, 50, and 100% on the major variables in Malaysian palm oil industry. The results of reduction in export duties suggest that the higher the percentages of export duty, the larger the changes in variable consistent with the previous finding.

Table 5 estimated the welfare gain from reduction of export duty on Malaysian palm oil industry. Due to the absence of export duty on Malaysian palm oil, the net social welfare effect gain for Malaysia is \$ 6.88 thousand with reduction in export duty by 10%. This number increased along with the increase in the percentage reduction of export duty. The net social welfare gain for Malaysia can be mostly attributable to the reallocation of production resources from the government to the producer and gains in producer's surplus due to the higher prices.

Effect of Trade	Reduction of Export Duty			
	10%	30%	50%	100%
Loss in Consumer Surplus (a)	419.21	1253.66	1668.90	3749.06
Gain of Deadweight Loss (b)	0.33	2.98	5.30	14 .8 9
Loss in Government Revenue (c)	1017.90	3053.71	4071.61	9161.12
Gain of Deadweight Loss (d)	0.36	3.21	5.71	16.06
Gain of Producer Surplus (a+b+c+d)	1438.13	4316.54	5756. 8 1	12956.03
Net Gain of Trade Policy (b+d)	6.88	61.90	110.05	309.52

 Table 5
 : Estimated Welfare Gain from Reduction of Export Duty

 on Malaysian Palm Oil Industry

Estimation yields a gain in Malaysian producer surplus of \$ 1.44 million (areas a, b, c, d), when export tax is reduced by 10%. The value of a (\$ 419.21 thousand) is loss in consumer surplus due to increase production at higher prices. The value c (\$1.02 million) is loss in tax government revenue collected from export of $D_k^{t}S_k^{t}$ units. The area d (\$ 0.36 thousand) represents a net gain because $S_k^{t}S_k^{e}$ units that could be sold for P_w^{e} are produced after the levy is reduced. Area b (\$ 0.33 thousand) represents a net gain because $D_k^{e}D_k^{t}$ is sold to foreign buyers at P_w^{e} rather than to domestic buyers at P_k^{t} .

Then the triangle b and d (\$ 6.88 thousand) is a net gain of trade liberalization policy-reduction of export duty by 10% - which attributable to the transfers of production resources to more efficient sectors.

CONCLUSION

The central theme of this paper is to analyze the economic impact of trade liberalization on the Malaysian palm oil industry. The findings indicate that trade liberalization will increase domestic price acreage, harvested area, yield, rest of the world excess demand and quantity exported. On the other hand it will reduce world price, domestic demand, export price and rest of the world excess supply. In terms of welfare analysis, the gainers are producer, and the losers are consumers and government.

The implication of the changes in trade liberalization policy, taking into consideration the welfare impacts of the trade policy changes on consumer and producer surpluses, obviously shows that Malaysian palm oil industry will be better off without any intervention. The cost of the policy intervention such as export duty to the society as a whole will be the dollar amount of the deadweight loss. The calculations show that the deadweight loss varies depending on the amount of duty. The number increased along with the increase in the percentage of duty imposed. This amount of deadweight loss will be a net gain from trade liberalization policy.

The most significant trade liberalization impact will accrue when exporter becomes eligible to ship most of the palm oil without constraints to trade, which will occur after the 5- years transition period is phased out in 2005. Taking into account such sharp increases in world palm oil demand, Malaysia's palm oil exports would have great potential in the world market by 2009.

REFERENCES

- Basiron, Y. 2001. Global Oils and Fats Business : Challenges in the New Millenium. Oil Palm Industry Economic Journal vol. 1 Number 1/2001 pp. 1-10. Malaysian Palm Oil Board. Malaysia.
- Dradjat, B., Hadi, P.U., Dereinda, R and Sulistyo, B. 1995. Upaya Pengembangan Produck Agroindustri Perkebunan (Komoditi Kelapa Sawit). Pusat Penelitian Sosial Ekonomi Pertanian. Badan Penelitian dan Pengembangan Pertanian. Departemen Pertanian. Bogor.
- Feridhanusetyawan. 1999. The Benefits of ESVL to APEC Economies : A General Equilibrium Analysis. Working Paper 99.09. ACIAR Malaysia Research Project.
- Feridhanusetyawan, Pangestu, M. and Erwidodo. 1999. The Benefits of Agricultural Liberalization in Asia Pacific. Working Paper 99.02. ACIAR Malaysia Research Project.
- Ibrahim, A. 1999. The International Trade in Palm Oil : Prospects and Challenges. Proceedings of the 1999 PORIM International Palm Oil Congress. *Economics Marketing Conference*. Palm Oil Research Institute of Malaysia.
- Kazarian and Ames. 2000. Trade Liberalization in Trinidad and Tobago Reducing in Common External Tariff. Department of Agricultural & Applied Economics College of Agricultural and Environmental Sciences University of Georgia
- Key Indicators of Developing Asian and Pacific Countries. 1997. Volume XXVIII. Economic and Development Resource Centre Asian Development Bank.
- Larson, D. F. 1996. Malaysia's Palm Oil Subsector. Policy Research Working Paper 1654. The World Bank International Economics Department Commodity Policy and Analysis Unit, September 1996.
- Lubis, A., 1994. A Market model for Malaysia Palm Oil Industry. *PhD Thesis*. Faculty of Economics and Management, University Putra Malaysia, Serdang, Selangor, Malaysia.

- Oil World, 1990. Oil World Annual 1990. Germany.
- Oil World, various issues. December 1990-1999. Germany
- Robinson, S. and De Rosa, D.A. 1995. Trade Liberalization and Regional Integration: Implication for 2020. International Food Policy Research Institute 2020.
- Rutherford, T. F., and Tarr, D.G. 1997. Trade Liberalization and Endogenous Growth in a Small Open Economy: A Quantitative Assessment. *Research* support was provided by the World Bank under RPO No. 68140.
- Shamsudin, M.N., Fatimah, M.A., Zainalabididn, M. and Lubis, A.R. 1994. A Market Model for Malaysia Palm Oil Industry. *The Malaysian Journal of Agricultural Economics* 11 (1994) : pp 81-102.
- Shamsudin, M.N., FAtimah, M.A. and Fauziah, A.H. 1997. The Effect of Export Duty Liberalization on the Malaysian Palm Oil Industry. *Malaysian Oil Science and Technology*, Vol. 6 no. 2: pp 79-82.
- Simatupang and Purwoto. 1995. Konsumsi Minyak Goreng untuk Pangan. IPB Press. Malaysia.
- Sumaryanto and Rantenata, M. 1996. Sistem Agribisnis dan Peranan Minyak Goreng dalam Perekonomian Nasional. IPB Press. Malaysia.
- Suryana, A. 1986. Trade Prospects of Malaysian Palm Oil in the International Markets for Fats and Oils. *A thesis*, submitted to the Graduate School of North California State University. America.
- Susila, W.R., Abbas, P.S., Hadi, P.U., Priyambodo, A. and Lubis, S.O. 1995. Model Ekonomi Minyak Sawit Mentah. Pusat Penelitian Sosial Ekonomi Pertanian. Badan Penelitian dan Pengembangan Pertanian. Departemen Pertanian. Bogor.
- Tondok, A.R. 1998. Production and Marketing of the Malaysian Palm Oil : Past, Present, and the Future. *International Oil Palm Conference*, September 23-25. 1998. Nusa Dua, Bali-Malaysia.