Meta-Analisis Efek Sel Punca Mesenkimal pada Model Tumor Hewan Coba

Pratika Yuhyi Hernanda
Department of Biomedicine, Medical Faculty, Wijaya Kusuma University Surabaya
e-mail: yuhyi_h@yahoo.com

Abstrak

Beberapa penelitian melaporkan bahwa Sel Punca Mesenkimal (SPM) dapat memicu ataupun menghambat pertumbuhan tumor. Oleh karena itu kami melakukan tinjauan sistematis dan meta-analisis studi eksperimental yang mengevaluasi efek SPM pada tumor. Metode: Kami mengumpulkan studi yang relevan dengan mencari dari ProQuest, PubMed Publisher, dan GoogleScholar. Sebuah meta-analisis dilakukan untuk ukuran hasil: volume tumor dan berat tumor. Pencarian menghasilkan 440 referensi, namun hanya 22 di antaranya yang dapat dimasukkan dalam meta-analisis. Dari 22 eksperimen ini, 16 eksperimen (72,7%) menunjukkan penurunan pertumbuhan tumor yang signifikan dan 6 eksperimen (27,3%) menunjukkan peningkatan pertumbuhan tumor yang signifikan. SPM yang direkayasa secara genetik dan SPM yang diinjeksikan pada fase akhir memiliki kontribusi yang signifikan terhadap efek penghambatan tumor. Meta-analisis menunjukkan bahwa tidak ada efek yang signifikan dari terapi SPM terhadap volume hewan tumor (SMD -0.23 [-0.55, 0.09]; n = 15), dan terhadap berat hewan tumor (SMD -0.19 [-0.77, 0.39]; n = 7). Kesimpulan: Efek SPM pada model tumor hewan coba tampaknya relatif tergantung terhadap beberapa faktor yang menyertai kondisi eksperimenya.

Kata Kunci: sel punca mesenkimal, model tumor hewan coba

A Meta-Analysis of the Ultimate Effect of Mesenchymal Stem/ Stromal Cell in Tumor Animal Models

Abstract

Several studies have reported the Mesenchymal Stem Cell (MSC) triggered and inhibited tumor growth. We therefore performed a systematic review and meta-analysis of experimental studies evaluating the effects of MSC on tumors. Method: We collected the relevant studies by searching ProQuest, PubMed Publisher, and GoogleScholar. A meta-analysis was performed for the outcome measure: tumor volume and tumor weight. The search resulted in 440 references, of which 22 could be included in the meta-analysis. Of these 22 experiments, 16 articles (72,7%) showed a significant decrease of tumor growth and 6 articles (27,3%) experiments showed a significant increase of tumor growth. The engineered MSC and the late phase of MSC injection have a significant contribution to tumor inhibition effect. The meta-analysis showed that there are no significant effect of mesenchymal stem cell therapy to the tumor animal volume (SMD-0.23[-0.55, 0.09]; n=15), and to the tumor animal weight (SMD -0.19 [-0.77,0.39]; n=7). Conclusion: MSC appears to have a relative dependent effect in animal models.

Keywords: mesenchymal stem cell, tumor animal model
INTRODUCTION

Study on MSC has been widely published which suggesting that the reciprocal relationship of stromal tumors will affect the growth and spread of cancer cells (Hanahan and Weinberg, 2011). Evidence showed MSC accumulation on tumor microenvironment both in primary cancers (Hernanda et al, 2013b, Huang et al, 2014b) and metastases (Hernanda et al, 2013a, Li et al, 2014, Song et al, 2014) has also been widely reported. Furthermore, several studies reported MSC effects triggered tumor growth (Karnoub et al, 2007, Zhang et al, 2013, Beckermann et al 2008), and several other studies reported evidence of anti-tumor role in MSC (Li et al, 2010b, Ryu et al, 2014, Zhao et al, 2012, Takahara et al, 2014). Although the infiltration of mesenchymal stem (stromal) cells (MSCs) into different tumors is widely recognized in animal models, the question whether these MSCs have a positive or negative effect on disease progression remains unanswered. This is reflected in the results obtained in experimental tumor models which show that depending on the exact experimental conditions MSCs can either exert tumor promoting effects and/or enhance metastasis but can also limit Hepatocellular Carcinoma (HCC) growth.

METHODS

We collected the relevant studies by searching ProQuest, PubMed Publisher, and GoogleScholar. Studies were included according to the following inclusion criteria: Mesenchymal Stem/Stromal Cell, tumor, and xenograft /animal study. The search resulted in 440 references. The study characteristics of the included studies varied considerably. The meta analysis was done using software Review Manager (RevMan) software Version 5.3.

LITERATURE SEARCH

A systematic search (conducted on March 2019), without any restrictions on publication data or language) was conducted in ProQuest. Additional references were retrieved from Google Scholar, and unindexed references from PubMed. The search strategy consisted of two main components: mesenchymal stem cell and tumor, and results were limited to animal studies.

STUDY SELECTION AND INCLUSION CRITERIA

The selection procedure was performed by the author. The exclusion criteria for the title and abstract screening phase include: 1). not primary study; 2). not animal study; 3). not disease of interest (tumor/cancer), 4). not intervention of interest
(mesenchymal stem cell). The following additional criteria were used for full-text screening: 1). full-text not available; 2). duplication; 3). conference abstracts.

STUDY CHARACTERISTICS AND DATA EXTRACTION

Data was extracted from the full-text papers of the studies. The following items were extracted: author, year, type of tumor, species/strain, source of MSC, MSC intervention, timing or phase of MSC administration, and outcome measures (Table 1). The outcome measure were tumor weight or volume. Mean value, standard deviation (SD) and the number of animals per group were extracted. If relevant data were not available in the text but only presented in graphic form, obtaining the data by measuring the graphs using desktop ruler.

DATA SYNTHESIS AND STATISTICAL ANALYSIS

For the outcome measures, the standardized mean difference (SMD) was used as the effect measure. I² was used as a measure of heterogeneity. Forest Plots were established with assistance of RevMan5.3 (Cochrane Library) software. Visual inspection of funnel plots was used to detect publication bias.

![Flow diagram showing literature search and selection results.](image)
RESULTS

The comprehensive search strategy on the effects of MSC in tumor animal models resulted in 440 records. After duplicates were removed, 230 studies were left. Duplicates were there because of the input keywords. After title and abstract screening, 53 studies were screened for full text. Ultimately, 22 studies were included in our analysis.

From the descriptive analysis, it was shown 6 articles (27.3%) reported MSC promotes tumor growth and 16 articles (72.7%) reported MSC inhibits tumor growth. Most of them (18 articles, 63.6%)

<table>
<thead>
<tr>
<th>No</th>
<th>Author</th>
<th>Type of tumor</th>
<th>Source of MSC</th>
<th>Intervention</th>
<th>Animal</th>
<th>MSC's Phase</th>
<th>Final Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ahn et al</td>
<td>Melanoma</td>
<td>AT-MSC</td>
<td>IFN-b</td>
<td>BALB/c nude mice</td>
<td>late - it</td>
<td>tumor inhibition</td>
</tr>
<tr>
<td>2</td>
<td>al</td>
<td>Glioma</td>
<td>AT-MSC</td>
<td>EGFRvIII</td>
<td>athymic nu/nu mice</td>
<td>early-it</td>
<td>tumor inhibition</td>
</tr>
<tr>
<td>3</td>
<td>Bianchi et al</td>
<td>Neuroblastoma</td>
<td>BM-MSC</td>
<td>no</td>
<td>Athymic nude mice</td>
<td>late -iv</td>
<td>tumor inhibition</td>
</tr>
<tr>
<td>4</td>
<td>Xie et al</td>
<td>HCC</td>
<td>BM-MSC</td>
<td>IFN-b</td>
<td>NOD/SCID mice</td>
<td>late - iv</td>
<td>tumor inhibition</td>
</tr>
<tr>
<td>5</td>
<td>Cavallari et al</td>
<td>Hepatoma</td>
<td>T-MSC</td>
<td>Sh-Lefty A</td>
<td>SCID mice</td>
<td>late - it</td>
<td>tumor inhibition</td>
</tr>
<tr>
<td>6</td>
<td>Cousin et al</td>
<td>Pancreatic ca</td>
<td>AT-MSC</td>
<td>no</td>
<td>athymic mice</td>
<td>late - it</td>
<td>tumor inhibition</td>
</tr>
<tr>
<td>7</td>
<td>de Melo et al</td>
<td>GIoblastoma</td>
<td>AT-MSC</td>
<td>no</td>
<td>nude mice</td>
<td>late - it</td>
<td>tumor inhibition</td>
</tr>
<tr>
<td>8</td>
<td>Du et al</td>
<td>Renal ca</td>
<td>AT-MSC</td>
<td>no</td>
<td>BALB/c nu/nu mice</td>
<td>early - sc</td>
<td>tumor promotion</td>
</tr>
<tr>
<td>9</td>
<td>Galie et al</td>
<td>Breast ca</td>
<td>Mu-MSC</td>
<td>no</td>
<td>FVB mice</td>
<td>early- sc</td>
<td>tumor promotion</td>
</tr>
<tr>
<td>10</td>
<td>Gao et al</td>
<td>Renal ca</td>
<td>BM-MSC</td>
<td>IL-12</td>
<td>Athymic nude mice</td>
<td>late - it</td>
<td>tumor inhibition</td>
</tr>
<tr>
<td>11</td>
<td>Gao Y et al</td>
<td>HCC</td>
<td>BM-MSC</td>
<td>PEDF</td>
<td>nude mice</td>
<td>late - it</td>
<td>tumor inhibition</td>
</tr>
<tr>
<td>12</td>
<td>Hernanda et al</td>
<td>HCC</td>
<td>T-MSC</td>
<td>no</td>
<td>NOD/SCID mice</td>
<td>early - sc</td>
<td>tumor promotion</td>
</tr>
<tr>
<td>13</td>
<td>Huang F et al</td>
<td>Gastric cancer</td>
<td>T-MSC</td>
<td>no</td>
<td>BALB/c nu/nu mice</td>
<td>early- sc</td>
<td>tumor promotion</td>
</tr>
<tr>
<td>14</td>
<td>Kang et al</td>
<td>Breast cancer</td>
<td>AF-MSC</td>
<td>AF2.CD-TK</td>
<td>BALB/c nude mice</td>
<td>late - it</td>
<td>tumor inhibition</td>
</tr>
<tr>
<td>15</td>
<td>Li T et al</td>
<td>HCC</td>
<td>AT-MSC</td>
<td>no</td>
<td>BALB/c nude mice</td>
<td>late - iv</td>
<td>tumor inhibition</td>
</tr>
<tr>
<td>16</td>
<td>Li L et al</td>
<td>Lung ca</td>
<td>AF-MSC</td>
<td>CXCR4</td>
<td>BALB/c nude mice</td>
<td>late - it</td>
<td>tumor inhibition</td>
</tr>
<tr>
<td>17</td>
<td>Li GC et al</td>
<td>HCC</td>
<td>BM-MSC</td>
<td>no</td>
<td>nude mice</td>
<td>late -iv</td>
<td>tumor inhibition</td>
</tr>
<tr>
<td>18</td>
<td>Ma et al</td>
<td>Breast ca</td>
<td>UC-MSC</td>
<td>no</td>
<td>SCID mice</td>
<td>late - it</td>
<td>tumor inhibition</td>
</tr>
<tr>
<td>19</td>
<td>Pessina et al</td>
<td>Prostate ca</td>
<td>AT-MSC</td>
<td>Paclitaxel</td>
<td>NOD/SCID mice</td>
<td>early- sc</td>
<td>tumor inhibition</td>
</tr>
<tr>
<td>20</td>
<td>Rhodes et al</td>
<td>Breast ca</td>
<td>BM-MSC</td>
<td>no</td>
<td>SCID mice</td>
<td>early- sc</td>
<td>tumor promotion</td>
</tr>
<tr>
<td>21</td>
<td>Secchiero et al</td>
<td>LH Lymphoma</td>
<td>BM-MSC</td>
<td>no</td>
<td>SCID mice</td>
<td>late - ip</td>
<td>tumor inhibition</td>
</tr>
<tr>
<td>22</td>
<td>Spaeth et al</td>
<td>Ovarian ca</td>
<td>AT-MSC</td>
<td>no</td>
<td>SCID mice</td>
<td>early- sc</td>
<td>tumor promotion</td>
</tr>
</tbody>
</table>

Table 1. Characteristics of the included MSC tumor animal studies.
Figure 2. A) Diagram of MSC intervention affecting the final effect of MSC in the tumor animal model with fisher exact test p-value of 0.015. B) Late phase of MSC injection affecting the final effect of MSC and gave the tumor inhibition effect with p value of 0.000

Effect of MSC on tumor weight in tumor animal model

The effects of MSC on the tumor weight in animal models was evaluated. The evaluation was done comparing the control group and MSC normal group (without MSC intervention). Three studies showed an increase of tumor weight (Cavallari *et al*, 2013, Hernanda *et al*, 2013c, Huang *et al*, 2014a); whereas the others showed a decrease (de Melo *et al*, 2015, Li *et al*, 2013b, Li *et al*, 2016, Ma *et al*, 2012).

However, the meta-analysis didn’t show a significant effect of MSC on the tumor weight in comparison with control group (SMD -0.19 [-0.77, 0.39]; n=7) (Fig 3). The heterogeneity was high (I² =92%) and the overall Z test was 0.63 (P=0.53).

Effect of MSC on tumor volume in tumor animal model

In addition to the analysis of the effect on tumor weight, we also did

Figure 4. Effect of MSC on tumor volume in tumor animal model.

PUBLICATION BIAS

Publication bias was assessed for the outcome of overall tumor growth, since the analysis of this outcome included the high number of studies. On visual inspection of the funnel plot (Fig 9), only small studies with negative or positive effect seem to be missing. This symmetry might indicate the little presence of publication bias.
DISCUSSION

MSCs is one of the important component within the microenvironment of the tumor and have been shown to have dual roles in the process of malignancy (Hernanda et al, 2014). The tumor/ cancer microenvironment is a dynamic environment resulting from tissue remodeling and metabolic changes that include tumor cells and non-tumor cells (stromal cells), tropical factors, transduction signal molecules, extracellular matrices and mechanical signals which can affect the growth and spread of tumor cells and trigger resistance to cancer therapy (3). Various kinds of stromal cells found in the microenvironment include endothelial cells, microglia/ macrophages, astrocyte, fibroblasts, MSC and immune cells. These cells are present in the tumor tissue with different phenotypes and biological functions. Non-immune mesenchymal cells such as fibroblasts, myofibroblasts and adipocytes, have an important role in the tumor/ cancer microenvironment in which they adapt to tumor/ cancer cells.

associated with several issues, including the particular animal models and types of MSCs used and the experimental procedure applied.

Engineered MSCs appears to have more tumor inhibition effect than normal MSCs. This result implies the important of the microenvironment that is favourable for MSC to inhibit tumor growth. One school of thought attributes to an important role for TLRs and subsequent immuno-polarization of MSCs (Waterman et al, 2010). MSCs express several TLRs and their capabilities to migrate, invade, and secrete immune modulating factors are tightly regulated by specific TLR-agonist engagement. TLR4-primed MSCs are polarized into pro-inflammatory MSC1 phenotype; whereas TLR3-primed MSCs are polarized into the classical immunosuppressive MSC2 phenotype (Waterman et al, 2010). In cancer models, MSC1-based treatment of established tumors in an immune competent model attenuates tumor growth and metastasis but MSC2-treated animals would display increased tumor growth and metastasis (Waterman, Henkle and Betancourt 2012).

The priming of all MSCs types with inflammatory cytokines such as IFN-γ and TNF-α in the tumor microenvironment express higher levels of VEGF (Liu et al, 2011) and induce inhibition of RUNX2, one of the pivotal factors driving osteoblast differentiation(Lee, Lee and Im 2011) and in turn these MSCs can enhance tumor progression. However, stimulation of MSCs with IFN-α and IFN-β decreased tumor cell proliferation and induced tumor cell apoptosis in mouse model melanoma (Ahn et al, 2013, Xu et al, 2014). BMP4-differentiated BM-MSCs became less suppressive towards T and NK cell proliferation and switched on their suppressive machinery by activating both IDO and COX-2 and promote the differentiation of neighboring MSCs and trigger the anti-inflammatory effect (Bassi et al, 2014) whereas pre conditioning with TGFB1 resulted in pro-invasive MSC in colon cancer progression (De Boeck et al, 2013).

Although they were not significantly associated with tumor weight and tumor volume, MSCs appear to promote tumor growth when co-injected with tumor cells, but inhibit tumor progression when administered into established tumors. These results were in line with other researchs by Gupta et al, (Klopp et al, 2011). Thus, the presence of MSCs during the early phase of tumorigenesis may contribute to angiogenesis that is required for tumor initiation. Indeed, an increase in vessel density was observed when MSCs
were co-injected with tumor cell lines (Gong et al, 2013, Beckermann et al, 2008).

Limitations

Some methodological issues which might influence the translation of animal results to human trials. There are several different administration routes (intra tumor, subcutaneous, intra venous and intra peritoneal) of MSC injection in the studies. However, MSC is usually an intravenous administrated drug in clinic, raising the question whether administration method could also affect the effect of MSC on tumor. Another limitation is that these animal studies did not study the tumor / cancer stage indicated for MSC. Tumor / cancer stage could be an important factor for the therapeutic efficacy of MSC since the phase of MSC injection also had a significant effect in the final effect of MSC in tumor. As for xenograft animal model, which were used in most of the studies, however, it’s hard to define the cancer stage which didn’t discuss in the studies.

Implications for practice

Based on the results of this meta-analysis, MSC could potentially have a therapeutic effect on tumor. Although several clinical studies reported that MSC could promote the risk of tumorigenesis, some other studies showed a very promising result on the effect of MSC in the tumor. Currently, several ongoing clinical trials (www.clinicaltrials.gov) are evaluating the effects of MSC on different cancers (breastcancer, colorectal cancer, pancreatic cancer, etc.). Of note, tumor cells and the tumor microenvironment will in turn affect the ultimate function of these recruited MSCs.

CONCLUSIONS

The effect of MSC has been demonstrated in experimental tumor animal model with the ultimate effect are both MSC inhibit and promote tumor growth. However, the final effect of MSC in tumor animal model is significantly associated with the MSC intervention and the phase of MSCs injection, and NOT associated with the source of MSC used and the type of tumor. Conclusion MSC appears to have a relative dependent effect in animal models since the micro environment play an important role. Although there were intrinsic limitations of the included animal studies, this systematic review and meta analysis could provide an important reference for future preclinical animal trials and may give contribution for management stem cell therapy of in cancer patients.
REFERENCES

Tissue Eng Part A. 21(3-4): 767-781.

Lee JS, Lee JM, Im GI, 2011. Electroporation-mediated transfer of Runx2 and Osterix genes to enhance osteogenesis of adipose stem cells. *Biomaterials*, 32(3): 760-768.

Li GC, Ye QH, Xue YH, Sun HJ, Zhou HJ et al, 2010a. Human mesenchymal...

ok Ahn J, woo Lee H, won Seo K, keun Kang S et al, 2013. Anti-tumor effect of adipose tissue derived-mesenchymal stem cells expressing interferon-β and

