

CTE

by Aini Djunet

Submission date: 22-Jan-2023 09:52AM (UTC+0700)

Submission ID: 1996718336

File name: 2599-8531-1-ED_22Jan23.docx (101.94K)

Word count: 4103

Character count: 24618

Review Article

**Antiobesity Potential of Herbal Plant
Butterfly pea flower (*Clitoria Ternatea*)**

Commented [p1]: Similarity using Turnitin is 29%, please decrease the similarity (the result of Turnitin was attached)

Nur Aini Djunet¹, Muflihah Rizkawati^{2*},

Department of Biochemistry and Nutrition, Faculty of Medicine, Universitas Islam Indonesia¹

Department of Pharmacology, Faculty of Medicine, Universitas Islam Indonesia²

³⁴ Corresponding author: dr. Muflihah Rizkawati, M.Biomed

Department of Pharmacology, Faculty of Medicine, Universitas Islam Indonesia²

email: dr.rizkawati@uui.ac.id

Phone number : 089672748242

Abstract

Obesity is a health problem with an increasing prevalence every year in many countries. Obese patients are at risk for complications related to some non-communicable diseases. The difficulty of losing weight in obese patients is due to low awareness of a good lifestyle, appropriate dietary patterns, and discipline in taking drugs to prevent complications. However, the need for drug consumption takes a long time. The risk of side effects arising from long-term drug use needs to be considered. Using herbal plants as an additional dietary intervention could be a better choice. This review was describe the benefits of the butterfly pea (*Clitoria ternatea*) flower in obese patients and reduce the potential for the side effects and complications. This study used the scooping review method by searching for articles in Pubmed, ScienceDirect, Cochrane, and Google Scholar journals. The keywords used are ((*Clitoria ternatea*) OR (Peacock Flower) OR (Butterfly nut) AND (Obesity) OR (Antiobesity)). Articles are limited by publication period from 2012 to 2022. Based on an article search, four matching reports were found. Our results showed that administration of *Clitoria ternatea* extract (CTE) inhibited weight gain, reduced triglyceride (TG) levels, increased adipose lipolysis, and decreased expression of adipogenic and lipogenic proteins. There is a positive effect of CTE on obese people and prevention of complications related to dyslipidemia.

Keywords: *Clitoria ternatea*; Butterfly Pea Flower; antiobesity; obesity

**Potensi Antiobesitas Tanaman Herbal
Bunga Telang (*Clitoria Ternatea*)****Abstrak**

Obesitas adalah masalah kesehatan dengan prevalensi meningkat setiap tahunnya di banyak negara. Pasien obesitas memiliki berisiko mengalami komplikasi berbagai penyakit non-communicable. Sulitnya menurunkan berat badan pasien obesitas dikarenakan rendahnya kesadaran akan gaya hidup yang baik, pola diet yang sesuai, dan disiplin mengkonsumsi obat-obatan untuk mencegah komplikasi. Namun kebutuhan konsumsi obat membutuhkan waktu yang lama. Risiko efek samping yang timbul dari

penggunaan obat jangka panjang perlu diperhatikan. Pemanfaatan tanaman herbal sebagai intervensi diet tambahan bisa menjadi pilihan yang lebih baik. Penelitian ini menggunakan metode scoping review dengan mencari artikel di jurnal Pubmed, ScienceDirect, Cochrane, dan Google Scholar. Kata kunci adalah ((*Clitoria ternatea*) ATAU (*Bunga Merak*) ATAU (*Kacang kupu-kupu*) DAN (*Obesitas*) ATAU (*Antiobesitas*)). Artikel dibatasi dengan periode terbit dari tahun 2012 hingga 2022. Berdasarkan penelusuran artikel, ditemukan empat laporan yang sesuai. Hasil analisis literatur menunjukkan bahwa pemberian CTE menghambat penambahan berat badan, menurunkan kadar TG, meningkatkan lipolisis adiposa, dan menurunkan ekspresi protein adipogenik dan lipogenik. Terdapat pengaruh positif CTE terhadap penderita obesitas dan pencegahan komplikasi terkait dislipidemia.

Kata Kunci: *Clitoria ternatea*; *Butterfly Pea Flower*; *antiobesitas*; *obesitas*

Received: _____

Revised: _____

Accepted: _____

INTRODUCTION

Obesity and overweight can affect health conditions due to excess accumulation of body fat. Since 1975, the obesity rate has tripled. There are 39% of adults who are overweight and 13% have been diagnosed with obesity. The mortality rate in obesity is higher than in underweight patients in various countries (Vaamonde & Álvarez-Món, 2020). The obesity prevalence in Indonesia raised by 11.3% in a decade. Obese sufferers in 2007 reached 10.5%, and increased to 21.8% in 2018 (IMH, 2018). In fact, obesity has been declared a chronic disease with a high mortality rate and disability (Burki, 2021). However, obesity can be prevented through dietary modifications and physical activity. Various food and non-food ingredients were studied to find out their role in preventing obesity, such as butterfly pea (*Clitoria ternatea*) (WHO Regional office for Europe, 2022).

Clitoria ternatea is a subgenus of *Clitoria* originating from the island of Ternate (Maluku Islands, Indonesia). This flower grows in South and East Africa, India, Madagascar, and other islands in the western Indian Ocean (Oguis et al., 2019). Butterfly pea flowers have been used traditionally for health as a supplement to improve cognitive function, antipyretic, anti-inflammatory, anti-pain and anti-diabetic. This flower has two colors, white and blue, but more research has been done on blue flowers. Butterfly pea flowers are known to contain many phenolic acids and other flavonoids. The main color-producing substance in butterfly pea flower is anthocyanin, a delphinidin derivative called ternatin. Ternatin is delphinidin 3-O-(6"-O-malonyl)-β-glucoside which has the structure of 3',5'-di-O-β-glucoside in ring B (Hiromoto et al., 2013). The application of anthocyanin in food products is limited because of its stability (Vidana Gamage et al., 2021). Cyclotide is the latest active compound found in butterfly pea flowers (Nguyen et al., 2016). Cyclotide are small circular peptide or mini proteins, consisting of 30 amino acids containing six conserved cysteine residues and three disulfide bonds which form the cyclic cystine knot (CCK) thereby making it more stable against acids, heat and proteolytic degradation (Burman et al., 2015). The structure of proline as cis or trans determines the cyclotide subfamily, Mobius (Kalata B1) has a cis-proline, and Bracelet (cycloviolacin) structure O1 has a trans-proline structure. In addition, there are minor cyclotides, which inhibit trypsin (Andrew Gould, 2017). Eliasen et al. inserted the melanocortin receptor-activation sequence into Kalata B1 to form a more stable melanocortin receptor agonist (Eliasen et al., 2012). Melanocortin-4 receptor (MC4R) is known to be an essential gene that causes obesity. Mutation in this gene cause a partial or complete loss of the ability of the MC4R to regulate dietary intake, homeostasis, and body weight (BW) (Marenne et al., 2020)(Brouwers et al., 2021). The studies on CTE effect in preventing obesity are still limited. However, there are several studies that have been carried out both

in vitro and in vivo methods. There are many useful ingredients in *CTE* which can be used to prevent diseases such as obesity and its complications. We did not find literature in the form of a review regarding the benefits of pea flowers in obesity. Therefore, we would like to conduct a scoping review to collect studies that have been conducted to improve an insight of the potential of butterfly pea flowers in preventing obesity. So that this study can provide a reference for developing further studies on the benefits of butterfly pea flowers in overcoming obesity.

METHODS

23

The search method in this study is a scoping review. Article searches use a database of articles from PubMed, ScienceDirect, Cochrane, and Google Scholar. The search was limited to published literature with a range of 10 years from 2012 to 2022. The types of literature used were Indonesian and English literature related to the good of the *CTE* in cases of obesity. The literature search strategy uses the keywords ((*Clitoria ternatea*) OR (Telang flower) OR (Butterfly pea) AND (Obesity) OR (Anti-obesity)). Based on the search results, four pieces of literature matched the topics to be discussed (Figure 1).

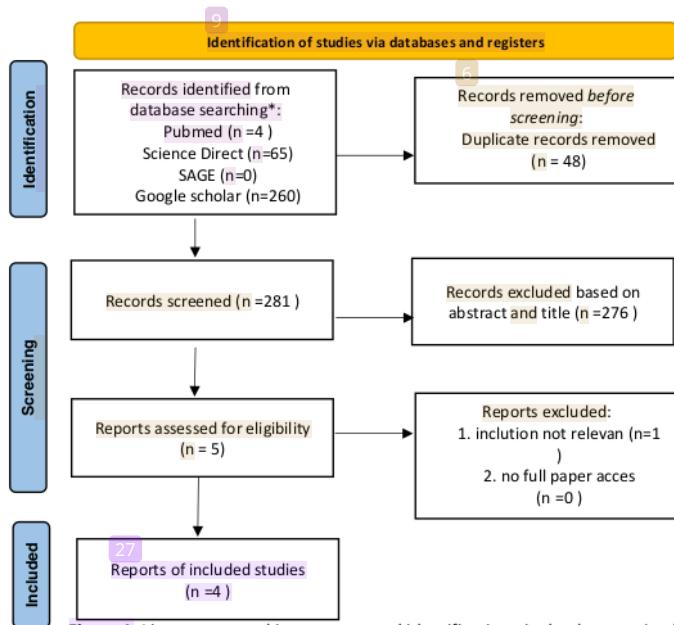


Figure 1. Literature searching strategy and identification via databases using keywords

RESULTS

In the search process, 329 articles were found, with 48 duplicate articles. The process continued with the selection of titles, relevant abstracts, appropriate inclusion and exclusion criteria, and articles

with full text until four relevant articles were obtained. Table 1 summarizes the details of each reported article.

Table 1. Summary of the *Clitoria ternatea* study

No	References	Methods	Result
1	Wang et al, 2022	In vivo study. 40 C57BL/6J mice were fed a standard diet (SD) or a high-fat, high-fructose (HFFD) diet for 16 weeks, and the HFFD-fed animals were fed at doses of 0.25%, 0.5%, and 2% (w/w) of CTE in drinking water.	Administration of high doses of AqCTE (2%) significantly inhibited weight gain, increased plasma adiponectin levels, gained levels of HDL-C, LDL-C, and FFA levels; decreased total cholesterol level.
2	Permatasari et al, 2022	In vitro study: amylase inhibition test: Incubation of dilute kombucha butterfly pea flowers (KBPF) in some concentrations with sodium phosphate buffer (500 L of 0.02 M), pH 6.9 with 0.006 M NaCl, and 0.5 mg/mL of pancreatic β amylase pigs occurred for 10 minutes at 25 oC. To record the absorbance at 540 nm, dilution with distilled water (10 mL) was carried out to bring the readings within the acceptable range. This study used acarbose as a positive control. In vivo study: 40 Swiss albino male mice were weighing 21.53 ± 1.92 g (3-5 weeks old). Probiotic drinks in the form of KBPF were given for six weeks. The treatment group was given KBPF with various doses of 65 mg/kg BW and 130 mg/kg BW.	In vitro study: Acarbose produced better β -amylase inhibitory activity than KBPF at doses of 150 and 200 mg/mL. The EC50 values of acarbose and KBPF were 162.6 and 160.2 mg/mL, respectively In vivo studies: A dose of 130 mg/kg BW lowers the lipid profile; increases HDL levels, lowers LDL, and lowers blood sugar levels, lowers oxidative stress levels, lowers levels of lipase & amylase, and increases levels of inflammatory markers (PGC-1 α , TNF α , IL10).
3	Thilavech et al, 2021	1. Clinical study (human) 2. 19-person early recruitment: 16 people (9 overweight and 7 obese) finished the study 3. Three groups: 4. 1. High fat meal + washout 1 week given 2gCTE+ HF meal + washout 1 week + 1gCTE+ HF meal	1. Postprandial blood sugar did not decrease significantly after treatment 2. TG levels decreased after being given 2g of CTE after 300 and 360 minutes 3. Free fatty acids (FFA) decreased significantly at 360 min postprandial at 2g CTE

	5. 2. 1gCTE+ HF meal + washout 1 week + HF meal + washout 1 week + 2gCTE+ HF meal 6. 2gCTE+ HF meal + washout 1 week + 1gCTE+ HF meal + washout 1 week + HF meal	4. levels of antioxidants (FRAP & thiols) increased followed by a significant decrease in MDA at CTE 1g and 2g 5. Glutathione peroxidase (Gpx) activity increased significantly at 2g CTE, with decreased cytokine levels IL-6 & TNF α and increased IL-1 β
4 Chayaratansin et al, 2019	Invitro: preadiposit 3T3-L1 Phytochemical profile of CTE was analyzed by liquid chromatography & tandem mass spectrometry (LC-MS/MS)	1. Giving CTE 500-750 μ g/mL significantly lowers triglyceride levels accompanied by increased lipolysis of mature adipocytes 2.RT-PCR Akt1 (T308) phosphorylation decreased significantly at a dose of 500 μ g/mL; 750 μ g/mL; 1000 μ g/mL CTE b. ERK1/2 phosphorylation (T202/Y204) decreased significantly at a dose of 750 μ g/mL; 1000 μ g/mL CTE c. PPAR γ & C/EBP α mRNA expression decreased significantly at doses of 500-1000 μ g/mL CTE 2 4. Western blot: CTE (500-1000 μ g/mL) a. The expression of adipogenic protein, lipogenic PPAR γ & C/EBP α , fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), decreased significantly 5. Flowcytometry No signs of toxicity up to 2000 μ g/mL CTE at H1, H3, H9

DISCUSSION

Obesity is a condition caused by excessive energy intake accompanied by increased free fatty acids in adipose tissue and a lack of physical activity as a form of energy expenditure (Sundaram et al., 2019) (Misra & Srivastava, 2013). This condition was very worrying because obesity, especially central obesity, can lead to some chronic diseases. Obese patients with dyslipidemia showed elevation of TG and FFA levels. They increased plasma concentrations of apolipoprotein (apo) B. Impaired lipolysis of triglyceride-rich triglyceride lipoproteins can occur with decreased mRNA expression of lipoproteins in adipose tissue (Adel Mehraban, et al., 2021). In managing obesity and dyslipidemia, dietary recommendations play a crucial role in pharmacological interventions to prevent the side effects of chronic hypercholesterolemia (Sundaram et al., 2019) (Misra & Srivastava, 2013).

Clitoria Ternatea Extract might inhibit the progression of weight gain or the development of obesity. It is likely to occur because CTE can increase adiponectin levels. Adiponectin levels were inversely related to body mass index (BMI) (Senkus et al., 2022) and fat mass. (Reneau et al., 2018) The CTE-improved energy balance by adiponectin is likely due to several mechanisms that align with the results of the four studies above. Clitoria Ternatea Extract reduce total cholesterol, LDL cholesterol (Wang et al.,

2022), triglycerides (Thilavech et al., 2021), plasma glucose (Permatasari et al., 2022) and mature adipocyte lipolysis. (Chayaratanaasin et al, 2019)

Adiponectin is a protein class hormone mainly produced by white adipose tissue. It contains 247 amino acids with molecular weight (for humans) of 28kDa, consisting of four parts, namely the signal region; variable region specific to the species; collagenous domain; and globular domains. (Da Silva Rosa et al., 2021) Several studies state that adiponectin plays a role in energy homeostasis and lipid and carbohydrate metabolism. (Halal et al., 2018) Adiponectin increases the efficiency of energy use because it plays a role in increasing glucose tolerance & insulin sensitivity, and reducing energetic expenditure. (Cisternas et al., 2019) Insulin sensitivity rise because adiponectin reduces hepatic glucose production and improves hepatic insulin sensitivity. (Bao et al., 2014) Adiponectin can gain the expression of gluconeogenesis enzymes, phosphoenol-carboxykinase, and glucose-6-phosphatase in the liver. (Qin et al., 2022) Pancreatic beta cells treated with adiponectin showed improvement in insulin exocytosis and Pdx-1 and MafA gene expression, both co-activators of insulin gene transcription. (Li et al., 2020) Adiponectin elevate glucose consumption by stimulating GLUT4 membrane translocation in muscle cells and adipocytes after AMPK phosphorylation. (Wang et al., 2017) It is because the APPL1 protein activates the Rab5 protein. Rab5 is a GTPase enzyme involved in endosome biogenesis and a key in GLUT4 translocation from the endosome to the plasma membrane. (Karvela et al., 2020) Adiponectin also inhibits the formation of glucose and glycogen. This is because it reduces the expression of the enzyme glucose-6-phosphatase and PEPCK, reducing glycogenolysis and gluconeogenesis in liver cells. (Tang et al., 2022) Because of its role in AMPK activation, adiponectin also reduces glycogen production in muscle cells. (Sung et al., 2022)

Increased adiponectin expression raised adipocyte differentiation, insulin sensitivity and TG accumulation in adipocytes. (Su et al., 2021) Visceral lipid deposits will be destroyed and stimulate the formation of new adipocytes in the subcutaneous tissue more sensitive to insulin. (Yang et al., 2018) This situation is also related with increased FFA levels. Adiponectin stimulates the expression of fatty acid translocase enzyme, so it also increases the transport of fatty acids to muscle cells. Several enzymes involved in the β -oxidation process also increase in number and activity due to adiponectin, so fatty acid catabolism also increases. (Ye et al., 2014) AMPK phosphorylation that occurs will inactivate ACC so that malonyl CoA production decreases and CPT-1 inhibition does not occur. CPT-1 is a transport protein that carries fatty acids to mitochondria, so it can be said that adiponectin increases fatty acid movements to mitochondria which β -oxidation enzymes will then degrade. (Ida Malandrino et al., 2015) Adiponectin elevates the expression of PPAR γ so that it also influences the transcription of many genes involved in lipid catabolism. (Zheng et al., 2014)

The development of the herbal plant *Clitoria ternatea* provides hope for a safer additional dietary intervention for patients with obesity. Many studies have demonstrated the anti-obesity potential of leaf, root, and flower extracts from the butterfly pea flower plant. A study by Chayaratanaasin et al. (2019) showed a positive effect of CTE on 3T3-L1 preadipocytes. It inhibited the proliferation and cell cycle retardation. Expression of the phospho-Akt and phospho-ERK1/2 signaling pathways was also repressed. In addition, inhibitory activity was also shown in the late stages of cell differentiation through decreased PPAR γ and C/EBP γ . Furthermore, there was a process of downregulation of fatty acid synthase and acetyl-CoA carboxylase, which also caused a decrease in triglyceride levels. Another benefit generated by the administration of *Clitoria ternatea* extract is increased catecholamine-induced lipolytic activity in adipocytes. These results indicate that CTE effectively attenuates adipogenesis by controlling cell cycle progression and decreasing adipogenic gene expression (Chayaratanaasin et al., 2019).

A study was carried out by Permatasari et al. (2022) said that the CTE (130 mg/kg BW) significantly relieved metabolic disorders caused by a high-fat diet. It also increased HDL levels, reduced LDL, TG, fasting blood glucose (FBG), and cholesterol levels. The addition of 65 and 130 mg/kg BW significantly

decreased the activity of the lipase and amylase enzymes (Permatasari et al., 2022). Wang et al. (2022) conducted a study on obese rats. *C. ternatea* aqueous extract significantly inhibited high-fat diet-induced weight gain in rats. Supplementation of *Clitoria ternatea* improved high-fat-induced increases in plasma insulin, leptin, and HOMA-IR levels and significantly increased plasma adiponectin levels in rats. In addition, mice treated with CT-H showed a significant reduction in liver weight compared to mice fed a high-fat diet (Wang et al., 2022).

Thilavech et al. (2021) demonstrated the role of CTE in postprandial glycemic and lipemic responses, antioxidant status, and pro-inflammatory markers in overnutrition men after consuming a high-fat meal. Administration of 2 g of CTE to obese patients has been shown to reduce serum triglycerides and postprandial serum free fatty acids 360 minutes post eating HF food. It significantly improved plasma antioxidant status by gained plasma FRAP and thiol levels. The plasma Gpx activity was significantly higher at 180 min after the HF meal with 2 g of CTE ingestion. This study supports that CTE can be used as an alternative natural agent to reduce postprandial lipemia and improve antioxidant status in overnutrition men after consuming HF foods (Thilavech et al., 2021). Very few studies, especially in humans, have looked at the role of CTE on adiponectin levels. Therefore, it needs future study explores how CTE can reduce adiponectin to support the development of CTE as an alternative therapy to support obesity.

CONCLUSION

Based on the review of the literature studies conducted, it was concluded that the extract of the butterfly pea flower (*Clitoria ternatea*) has benefits in treating patients with obesity. In addition to losing weight, *Clitoria ternatea* also has a role in preventing obesity complications associated with dyslipidemia by improving HDL, LDL, total cholesterol, and amylase and lipase levels closer to normal.

REFERENCES

Adel Mehraban, M. S., Tabatabaei-Malazy, O., Rahimi, R., Daniali, & M., Khashayar, P. (2021). Targeting dyslipidemia by herbal medicines: A systematic review of meta-analyses. *Journal of Ethnopharmacology*, 280. <https://doi.org/https://doi.org/10.1016/j.jep.2021.114407>

Andrew Gould, J. A. C. (2017). Cyclotides: Overview and biotechnological applications Andrew. *Chembiochem*, 18(14), 1350–1363. <https://doi.org/10.1002/cbic.201700153>.Cyclotides

Bao, Z., Yuan, X., Duan, S., & Dong, X. (2014). Clinical implication of changes in serum adiponectin in patients with hepatogenic diabetes. *Scientific Reports*, 4. <https://doi.org/10.1038/srep05560>

Brouwers, B., de Oliveira, E. M., Marti-Solano, M., Monteiro, F. B. F., Laurin, S. A., et al., (2021). Human MC4R variants affect endocytosis, trafficking and dimerization revealing multiple cellular mechanisms involved in weight regulation. *Cell Reports*, 34(12). <https://doi.org/10.1016/j.celrep.2021.108862>

Burki, T. (2021). European Commission classifies obesity as a chronic disease. *The Lancet Diabetes and Endocrinology*, 9(7), 418. [https://doi.org/10.1016/S2213-8587\(21\)00145-5](https://doi.org/10.1016/S2213-8587(21)00145-5)

Burman, R., Yeshak, M. Y., Larsson, S., Craik, D. J., Rosengren, K. J., et al (2015). Distribution of circular proteins in plants: Large-scale mapping of cyclotides in the Violaceae. *Frontiers in Plant Science*, 6(October). <https://doi.org/10.3389/fpls.2015.00855>

Chayaratanasin, P., Caobi, A., Suparpprom, C., Saenset, S., Pasukamonset, P. et al (2019). *Clitoria ternatea* Flower Petal Extract Inhibits Adipogenesis and Lipid Accumulation in 3T3-L1. *Molecules*, 24(1894), 1–16.

Cisternas, P., Martinez, M., Ahima, R. S., William Wong, G., & Inestrosa, N. C. (2019). Modulation of Glucose Metabolism in Hippocampal Neurons by Adiponectin and Resistin. *Molecular Neurobiology*, 7

56(4), 3024–3037. <https://doi.org/10.1007/s12035-018-1271-x>

Da Silva Rosa, S. C., Liu, M., & Sweeney, G. (2021). Adiponectin synthesis, secretion and extravasation from circulation to interstitial space. *Physiology*, 36(3), 134–149. <https://doi.org/10.1152/PHYSIOL.00031.2020>

Eliassen, R., Daly, N. L., Wulff, B. S., Andresen, T. L., Conde-Frieboes, K. W. et al (2012). Design, synthesis, structural and functional characterization of novel melanocortin agonists based on the cyclotide kalata B1. *Journal of Biological Chemistry*, 287(48), 40493–40501. <https://doi.org/10.1074/jbc.M112.395442>

Halah, M. P., Marangon, P. B., Antunes-Rodrigues, J., & Elias, L. L. K. (2018). Neonatal nutritional programming impairs adiponectin effects on energy homeostasis in adult life of male rats. *American Journal of Physiology - Endocrinology and Metabolism*, 315(1), E29–E37. <https://doi.org/10.1152/ajpendo.00358.2017>

Hiromoto, T., Honjo, E., Tamada, T., Noda, N., Kazuma, et al. (2013). Crystal structure of UDP-glucose:anthocyanidin 3-O-glucosyltransferase from *Clitoria ternatea*. *Journal of Synchrotron Radiation*, 20(6), 894–898. <https://doi.org/10.1107/S0909049513020712>

Ida Malandrino, M., Fuchio, R., Weber, M., Calderon-Dominguez, M., Francesc Mir, J., Valcarcel, L., Escoté, X., Gómez-Serrano, M., Peral, B., Salvadó, L., Fernández-Veledo, S., Casals, N., Vázquez-Carrera, M., Villarroyo, F., Vendrell, J. J., Serra, D., & Herrero, L. (2015). Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation. *Am J Physiol Endocrinol Metab*, 308, 756–769. <https://doi.org/10.1152/ajpendo.00362.2014.-Lipid>

Karvela, A., Kostopoulou, E., Rojas Gil, A.P., Avgeri, A., Pappa, A., Barrios, V., Lambrinidis, G., Dimopoulos, I., Georgiou, G., Argente, J., Spiliotis, B. (2020). Adiponectin signaling and impaired GTPase Rab5 expression in adipocytes of adolescents with obesity. *Horm Res Paediatr*, 93, 287–296. <https://doi.org/10.1159/000510851>

Kemenkes RI. (2018). Hasil Riset Kesehatan Dasar Tahun 2018. *Kementerian Kesehatan RI*, 53(9), 1689–1699.

Labh, S. N., & Shakya, S. R. (2014). Application of immunostimulants as an alternative to vaccines for health management in aquaculture. *International Journal of Fisheries and Aquatic Studies*, 2(1), 153–156.

Li, X., Zhang, D., Vatner, D. F., Goedke, L., Hirabara, S. M., Zhang, Y., Perry, R. J., & Shulman, G. I. (2019). Mechanisms by which adiponectin reverses high fat diet-induced insulin resistance in mice. *PNAS*, 117(51), 32584–32593. <https://doi.org/10.1073/pnas.1922169117/-DCSupplemental>

Marenne, G., Hendricks, A. E., Perdikari, A., Bounds, R., Payne, F. et al (2020). Exome Sequencing Identifies Genes and Gene Sets Contributing to Severe Childhood Obesity, Linking PIP Variants to Repressed POMC Transcription. *Cell Metabolism*, 31(6), 1107–1119.e12. <https://doi.org/10.1016/j.cmet.2020.05.007>

Misra, A., & Shrivastava, U. (2013). Obesity and dyslipidemia in South Asians. *Nutrients*, 5(7), 2708–2733. <https://doi.org/10.3390/nu5072708>

Nguyen, K. N. T., Nguyen, G. K. T., Nguyen, P. Q. T., Ang, K. H., Dedon, P. C. et al (2016). Immunostimulating and Gram-negative-specific antibacterial cyclotides from the butterfly pea (*Clitoria ternatea*). *FEBS Journal*, 283(11), 2067–2090. <https://doi.org/10.1111/febs.13720>

Oguis, G. K., Gilding, E. K., Jackson, M. A., & Craik, D. J. (2019). Butterfly pea (*Clitoria ternatea*), a cyclotide-bearing plant with applications in agriculture and medicine. *Frontiers in Plant Science*, 10(May), 1–23. <https://doi.org/10.3389/fpls.2019.00645>

Permatasari, H. K., Nurkolis, F., Gunawan, W. Ben, Yusuf, et al (2022). Modulation of gut microbiota and markers of metabolic syndrome in mice on cholesterol and fat enriched diet by butterfly pea flower kombucha. *Current Research in Food Science*, 5(August), 1251–1265. <https://doi.org/10.1016/j.crcs.2022.08.005>

Qin, C., Zhao, W., Yan, X., Yang, G., Yang, L., Lu, R., Pi, D., & Nie, G. (2022). Effects of Adiponectin on Glucose Metabolism in the Hepatopancreas of Grass Carp (*Ctenopharyngodon idella*). *Aquaculture Nutrition*, 2022, 1–14. <https://doi.org/10.1155/2022/5699931>

Sundaram, S., Palaniappan, B., Nepal, N., Chaffins, S., Sundaram, U., et al (2019). Mechanism of dyslipidemia in obesity—unique regulation of ileal villus cell brush border membrane sodium-bile acid cotransport. *Cells*, 8(10). <https://doi.org/10.3390/cells8101197>

Su, S. C., Chiang, C. F., Hsieh, C. H., Lu, G. H., Liu, J. S., Shieh, Y. S., Hung, Y. J., & Lee, C. H. (2021). Growth arrest-specific 6 modulates adiponectin expression and insulin resistance in adipose tissue. *Journal of Diabetes Investigation*, 12(4), 485–492. <https://doi.org/10.1111/jdi.13412>

Sung, H. K., Mitchell, P. L., Gross, S., Marette, A., & Sweeney, G. (2022). ALY688 elicits adiponectin-mimetic signaling and improves insulin action in skeletal muscle cells. *American Journal of Physiology - Cell Physiology*, 322(2), C151–C163. <https://doi.org/10.1152/ajpcell.00603.2020>

Tang, Y.-H., Wang, Y.-H., Chen, C.-C., Chan, C.-J., Tsai, F.-J., & Chen, S.-Y. (2022). Genetic and Functional Effects of Adiponectin in Type 2 Diabetes Mellitus Development. *International Journal of Molecular Sciences*, 23(21), 13544. <https://doi.org/10.3390/ijms232113544>

Thilavech, T., Adisakwattana, S., Channuwong, P., Radarit, K., Jantaratap, K., et al (2021). Clitoria ternatea flower extract attenuates postprandial lipemia and increases plasma antioxidant status responses to a high-fat meal challenge in overweight and obese participants. *Biology*, 10(10). <https://doi.org/10.3390/biology10100975>

Vaamonde, J. G., & Álvarez-Món, M. A. (2020). Obesity and overweight. *Medicine (Spain)*, 13(14), 767–776. <https://doi.org/10.1016/j.med.2020.07.010>

Vidana Gamage, G. C., Lim, Y. Y., & Choo, W. S. (2021). Anthocyanins From Clitoria ternatea Flower: Biosynthesis, Extraction, Stability, Antioxidant Activity, and Applications. *Frontiers in Plant Science*, 12(December), 1–17. <https://doi.org/10.3389/fpls.2021.792303>

Wang, Y., Liu, T., Xie, Y., Li, N., Liu, Y., et al. (2022). Clitoria ternatea blue petal extract protects against obesity, oxidative stress, and inflammation induced by a high-fat, high-fructose diet in C57BL/6 mice. *Food Research International*, 162(September). <https://doi.org/10.1016/j.foodres.2022.112008>

WHO Regional Office for Europe. (2022). *WHO European Regional Obesity Report 2022*.

Yang, W., Yang, C., Luo, J., Wei, Y., Wang, W., & Zhong, Y. (2018). Adiponectin promotes preadipocyte differentiation via the PPAR γ pathway. *Molecular Medicine Reports*, 17(1), 428–435. <https://doi.org/10.3892/mmr.2017.7881>

Ye, R., Holland, W.L., Gordillo, R., Wang, M., Wang, Q.A., Shao, M., Morley, T.S., Gupta, R.K., Stahl, A., Scherer, P.E. (2014). Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes β -cell regeneration. *eLIFE*, 3, e03851. <https://doi.org/10.7554/eLife.03851>

Zheng, F., Zhang, S., Lu, W., Wu, F., Yin, X., Yu, D., Pan, Q., & Li, H. (2014). Regulation of insulin resistance and adiponectin signaling in adipose tissue by liver X receptor activation highlights a cross-talk with PPAR γ . *PLoS ONE*, 9(6). <https://doi.org/10.1371/journal.pone.0101269>

PRIMARY SOURCES

1	repository.ubaya.ac.id Internet Source	3%
2	digitalcommons.fiu.edu Internet Source	2%
3	Happy Kurnia Permatasari, Fahrul Nurkolis, William Ben Gunawan, Vincentius Mario Yusuf et al. "Modulation of gut microbiota and markers of metabolic syndrome in mice on cholesterol and fat enriched diet by butterfly pea flower kombucha", Current Research in Food Science, 2022 Publication	2%
4	www.ncbi.nlm.nih.gov Internet Source	2%
5	www.researchgate.net Internet Source	1%
6	Marisa Perdomo, Claire Davies, Kimberly Levenhagen, Kathryn Ryans, Laura Gilchrist. "Patient education for breast cancer-related	1%

lymphedema: a systematic review", Journal of Cancer Survivorship, 2022

Publication

7 Mufliah Rizkawati. "Potensi Diet Soybean (*Glycine max*) Sebagai Alternatif Terapi Obesitas Dengan Dislipemia", Herb-Medicine Journal, 2022 1 %
Publication

8 Yijun Wang, Tiantian Liu, Yanmei Xie, Na Li et al. "Clitoria ternatea blue petal extract protects against obesity, oxidative stress, and inflammation induced by a high-fat, high-fructose diet in C57BL/6 mice", Food Research International, 2022 <1 %
Publication

9 digitalcommons.unmc.edu <1 %
Internet Source

10 www.science.gov <1 %
Internet Source

11 "Obesity and Cancer", Springer Science and Business Media LLC, 2021 <1 %
Publication

12 vital.seals.ac.za:8080 <1 %
Internet Source

13 Helga Febrina Kinayahnty, Miranti Dewi Pramaningtyas, Rokhima Lusiantari, Hanggoro Tri Rinonce. "The Effect of Avocado Drink <1 %

(*Persea Americana* Mill) on the Incidence of Ballooning Hepatocyte in the Liver Organs of Rats (*Rattus Novergicus*) Induced by Hypercholesterolemia", American Heart Journal, 2022

Publication

14 Penghua Fang, Yuqing She, Mei Yu, Wen Min, Wenbin Shang, Zhenwen Zhang. "Adipose-Muscle crosstalk in age-related metabolic disorders: The emerging roles of adipomyokines", Ageing Research Reviews, 2023 <1 %

Publication

15 Hiromoto, Takeshi, Eijiro Honjo, Taro Tamada, Naonobu Noda, Kohei Kazuma, Masahiko Suzuki, Michael Blaber, and Ryota Kuroki. "Structural basis for acceptor-substrate recognition of UDP-glucose: Anthocyanidin 3-O -glucosyltransferase from *Clitoria ternatea* : Crystal structures of UGT78K6 in complex with flavonoids", Protein Science, 2014. <1 %

Publication

16 Mariana Peduti Halah, Paula Beatriz Marangon, Jose Antunes-Rodrigues, Lucila L. K. Elias. "Neonatal nutritional programming impairs adiponectin effects on energy homeostasis in adult life of male rats", American Journal of Physiology-Endocrinology and Metabolism, 2018 <1 %

Publication

17	academic.oup.com	<1 %
18	hdl.handle.net	<1 %
19	journals.plos.org	<1 %
20	nusantarahasanajournal.com	<1 %
21	www.frontiersin.org	<1 %
22	www.pnrjournal.com	<1 %
23	Kamilah Hayatun Nufus, Adinda Salsabilah, Nurul Aeni, Zakiyyah Arief Atshillah, Casman Casman. "THE EFFECTIVENESS OF ORAL SUCROSE ON PAIN DURING INVASIVE PROCEDURES IN PREMATURE INFANTS: SCOPING REVIEW", Jurnal Mitra Kesehatan, 2021	<1 %
24	Munazza Tamkeen Fatima, Ikhlak Ahmed, Khalid Adnan Fakhro, Ammira Al - Shabeb Akil. "Melanocortin - 4 receptor complexity in energy homeostasis/obesity and drug development strategies", Diabetes, Obesity and Metabolism, 2021	<1 %

25 Rhea Subba, Rajat Sandhir, Surya Pratap Singh, Birendra Nath Mallick, Amal Chandra Mondal. "Pathophysiology linking depression and type 2 diabetes: Psychotherapy, physical exercise, and fecal microbiome transplantation as damage control", European Journal of Neuroscience, 2021 <1 %

Publication

26 core.ac.uk <1 %

Internet Source

27 downloads.hindawi.com <1 %

Internet Source

28 interstellarsuperherbs.com <1 %

Internet Source

29 journals.biologists.com <1 %

Internet Source

30 uwe-repository.worktribe.com <1 %

Internet Source

31 vdoc.pub <1 %

Internet Source

32 Bas Brouwers, Edson Mendes de Oliveira, Maria Marti-Solano, Fabiola B.F. Monteiro et al. "Human MC4R variants affect endocytosis, trafficking and dimerization revealing multiple <1 %

cellular mechanisms involved in weight regulation", Cell Reports, 2021

Publication

33 Rikke Nørbæk, Karina Nielsen, Tadao Kondo. "Anthocyanins from flowers of *Cichorium intybus*", Phytochemistry, 2002 <1 %

Publication

34 Suparmi Suparmi, Minidian Fasitasari, Martanto Martosupono, Jubhar Christian Mangimbulude. " Comparisons of Curative Effects of Chlorophyll from (L) Merr Leaf Extract and Cu-Chlorophyllin on Sodium Nitrate-Induced Oxidative Stress in Rats ", Journal of Toxicology, 2016 <1 %

Publication

35 "Nutritional Antioxidant Therapies: Treatments and Perspectives", Springer Science and Business Media LLC, 2017 <1 %

Publication

Exclude quotes On

Exclude bibliography On

Exclude matches Off