The Role of TNF- α Inhibitors in The Management of Gout Arthritis and Its Comparison with Other Modalities

Nita Parisa, Valyn Theodra Tantoro, Masayu Syarinta Adenina, Bintang Arroyantri Prananjaya

Abstract


Background: Gout arthritis is caused by the deposition of monosodium urate crystals in the joints, which can cause significant pain, swelling, and recurring inflammation, particularly in the big toe. Inflammatory mediators are critical to the beginning and duration of the inflammatory response in gout arthritis. Gout is mediated by TNF-α, ILs, and the NLRP3 inflammasome, which promotes macrophages, monocytes, and neutrophils, leading to inflammatory reactions. TNF-α acts as a potent inflammatory mediator by stimulating the expression of other inflammatory cytokines, adhesion molecules, and matrix metalloproteinases (MMPs). TNF-α interacts with particular receptors and activates intracellular signaling pathways, leading to leukocyte recruitment, NLRP3 inflammasome activation, and the release of other inflammatory mediators. Objective: This article is a review article in which the researchers examine the current state of understanding regarding the role of TNF-α as a major inflammatory mediator in gout arthritis, deepen the understanding of TNF-α in gout inflammation, and explore its potential as a therapeutic target. Method: It involvedsystematically searching relevant databases, selecting studies based on inclusion criteria, and synthesizing findings to identify trends, gaps, and the current state of knowledge on the topic. Result: The results of this review article indicated that TNF-α plays a crucial role in joint inflammation by triggering the release of pro-inflammatory cytokines and stimulating neutrophil infiltration into the joints. Conclusion: Thus, Inhibiting TNF-α can reduce inflammation and improve symptoms in people with gout arthritis.



Keywords


Gout Arthritis; TNF-α; Inflammatory Mediator; Therapy

Full Text:

PDF

References


Abhishek, A., Roddy, E., & Doherty, M. (2017). Gout – a guide for the general and acute physicians. Clinical Medicine, 17(1), 54. https://doi.org/10.7861/CLINMEDICINE.17-1-54

Aggarwal, B. B. (2003). Signalling pathways of the TNF superfamily: a double-edged sword. Nature Reviews. Immunology, 3(9), 745–756. https://doi.org/10.1038/NRI1184

Amaral, F. A., Bastos, L. F. S., Oliveira, T. H. C., Dias, A. C. F., Oliveira, V. L. S., Tavares, L. D., Costa, V. V., Galvão, I., Soriani, F. M., Szymkowski, D. E., Ryffel, B., Souza, D. G., & Teixeira, M. M. (2016). Transmembrane TNF-α is sufficient for articular inflammation and hypernociception in a mouse model of gout. European Journal of Immunology, 46(1), 204–211. https://doi.org/10.1002/EJI.201545798

Busso, N., & So, A. (2010). Gout. Mechanisms of inflammation in gout. Arthritis Research & Therapy, 12(2), 206. https://doi.org/10.1186/AR2952

Coburn, B. W., & Mikuls, T. R. (2016). Treatment Options for Acute Gout. Federal Practitioner, 33(1), 35.

Cronstein, B. N., & Terkeltaub, R. (2006). The inflammatory process of gout and its treatment. Arthritis Research and Therapy, 8(SUPPL. 1), 1–7. https://doi.org/10.1186/AR1908/TABLES/1

Dalbeth, N., Lauterio, T. J., & Wolfe, H. R. (2014). Mechanism of Action of Colchicine in the Treatment of Gout. Clinical Therapeutics, 36(10), 1465–1479. https://doi.org/10.1016/J.CLINTHERA.2014.07.017

Dalbeth, N., Merriman, T. R., & Stamp, L. K. (2016). Gout. The Lancet, 388(10055), 2039–2052. https://doi.org/10.1016/S0140-6736(16)00346-9

Evangelatos, G., Bamias, G., Kitas, G. D., Kollias, G., & Sfikakis, P. P. (2022). The second decade of anti-TNF-a therapy in clinical practice: new lessons and future directions in the COVID-19 era. Rheumatology International, 42(9), 1493. https://doi.org/10.1007/S00296-022-05136-X

Galozzi, P., Bindoli, S., Doria, A., Oliviero, F., & Sfriso, P. (2021). Autoinflammatory Features in Gouty Arthritis. Journal of Clinical Medicine 2021, Vol. 10, Page 1880, 10(9), 1880. https://doi.org/10.3390/JCM10091880

Gonzalez, E. B. (2012). An update on the pathology and clinical management of gouty arthritis. Clinical Rheumatology, 31(1), 13. https://doi.org/10.1007/S10067-011-1877-0

Holbrook, J., Lara-Reyna, S., Jarosz-Griffiths, H., & McDermott, M. (2019). Tumour necrosis factor signalling in health and disease. F1000Research, 8. https://doi.org/10.12688/F1000RESEARCH.17023.1

Imaizumi, T., Itaya, H., Fujita, K., Kudoh, D., Kudoh, S., Mori, K., Fujimoto, K., Matsumiya, T., Yoshida, H., & Satoh, K. (2022). The Signaling Pathway of TNF Receptors: Linking Animal Models of Renal Disease to Human CKD. International Journal of Molecular Sciences 2022, Vol. 23, Page 3284, 23(6), 3284. https://doi.org/10.3390/IJMS23063284

Jang, D. I., Lee, A. H., Shin, H. Y., Song, H. R., Park, J. H., Kang, T. B., Lee, S. R., & Yang, S. H. (2021). The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. International Journal of Molecular Sciences, 22(5), 1–16. https://doi.org/10.3390/IJMS22052719

Kalliolias, G. D., & Ivashkiv, L. B. (2016). TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nature Reviews. Rheumatology, 12(1), 49. https://doi.org/10.1038/NRRHEUM.2015.169

Kingsbury, S. R., Conaghan, P. G., & McDermott, M. F. (2011). The role of the NLRP3 inflammasome in gout. Journal of Inflammation Research, 4(1), 39. https://doi.org/10.2147/JIR.S11330

Leung, Y. Y., Yao Hui, L. L., & Kraus, V. B. (2015). Colchicine --- update on mechanisms of action and therapeutic uses. Seminars in Arthritis and Rheumatism, 45(3), 341. https://doi.org/10.1016/J.SEMARTHRIT.2015.06.013

Lin, J., Ziring, D., Desai, S., Kim, S., Wong, M., Korin, Y., Braun, J., Reed, E., Gjertson, D., & Singh, R. R. (2008). TNFα blockade in human diseases: An overview of efficacy and safety. Clinical Immunology (Orlando, Fla.), 126(1), 13. https://doi.org/10.1016/J.CLIM.2007.08.012

Lis, K., Kuzawińska, O., & Bałkowiec-Iskra, E. (2014). Tumor necrosis factor inhibitors – state of knowledge. Archives of Medical Science : AMS, 10(6), 1175. https://doi.org/10.5114/AOMS.2014.47827

Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A., & Tschopp, J. (2006). Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006 440:7081, 440(7081), 237–241. https://doi.org/10.1038/nature04516

McGeough, M. D., Wree, A., Inzaugarat, M. E., Haimovich, A., Johnson, C. D., Peña, C. A., Goldbach-Mansky, R., Broderick, L., Feldstein, A. E., & Hoffman, H. M. (2017a). TNF regulates transcription of NLRP3 inflammasome components and inflammatory molecules in cryopyrinopathies. The Journal of Clinical Investigation, 127(12), 4488. https://doi.org/10.1172/JCI90699

McGeough, M. D., Wree, A., Inzaugarat, M. E., Haimovich, A., Johnson, C. D., Peña, C. A., Goldbach-Mansky, R., Broderick, L., Feldstein, A. E., & Hoffman, H. M. (2017b). TNF regulates transcription of NLRP3 inflammasome components and inflammatory molecules in cryopyrinopathies. The Journal of Clinical Investigation, 127(12), 4488. https://doi.org/10.1172/JCI90699

Min, H. K., Kim, S. H., Kim, H. R., & Lee, S. H. (2022). Therapeutic Utility and Adverse Effects of Biologic Disease-Modifying Anti-Rheumatic Drugs in Inflammatory Arthritis. International Journal of Molecular Sciences 2022, Vol. 23, Page 13913, 23(22), 13913. https://doi.org/10.3390/IJMS232213913

Monaco, C., Nanchahal, J., Taylor, P., & Feldmann, M. (2015). Anti-TNF therapy: past, present and future. International Immunology, 27(1), 55. https://doi.org/10.1093/INTIMM/DXU102

Parameswaran, N., & Patial, S. (2010). Tumor Necrosis Factor-α Signaling in Macrophages. Critical Reviews in Eukaryotic Gene Expression, 20(2), 87. https://doi.org/10.1615/CRITREVEUKARGENEEXPR.V20.I2.10

Ragab, G., Elshahaly, M., & Bardin, T. (2017). Gout: An old disease in new perspective – A review. Journal of Advanced Research, 8(5), 495. https://doi.org/10.1016/J.JARE.2017.04.008

Wong, M., Ziring, D., Korin, Y., Desai, S., Kim, S., Lin, J., Gjertson, D., Braun, J., Reed, E., & Singh, R. R. (2008). TNFα blockade in human diseases: Mechanisms and future directions. Clinical Immunology (Orlando, Fla.), 126(2), 121. https://doi.org/10.1016/J.CLIM.2007.08.013

Yokose, K., Sato, S., Asano, T., Yashiro, M., Kobayashi, H., Watanabe, H., Suzuki, E., Sato, C., Kozuru, H., Yatsuhashi, H., & Migita, K. (2017). TNF-α potentiates uric acid-induced interleukin-1β (IL-1β) secretion in human neutrophils. New Pub: Oxford University Press, 28(3), 513–517. https://doi.org/10.1080/14397595.2017.1369924

You, K., Gu, H., Yuan, Z., & Xu, X. (2021). Tumor Necrosis Factor Alpha Signaling and Organogenesis. Frontiers in Cell and Developmental Biology, 9, 727075. https://doi.org/10.3389/FCELL.2021.727075

Zha, X., Yang, B., Xia, G., & Wang, S. (2022). Combination of Uric Acid and Pro-Inflammatory Cytokines in Discriminating Patients with Gout from Healthy Controls. Journal of Inflammation Research, 15, 1413. https://doi.org/10.2147/JIR.S357159

Zhang, Y., Pan, R., Xu, Y., & Zhao, Y. (2020). Treatment of refractory gout with TNF-α antagonist etanercept combined with febuxostat. Annals of Palliative Medicine, 9(6), 4332338–4334338. https://doi.org/10.21037/APM-20-2072




DOI: http://dx.doi.org/10.30742/jikw.v13i2.3730

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Nita Parisa, Valyn Theodra Tantoro, Masayu Syarinta Adenina, Bintang Arroyantri Prananjaya

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Jurnal Ilmiah Kedokteran Wijaya Kusuma is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License