A Sago Positive Character: A Literature Review

Budhi Setiawan, Fetriyuna Fetriyuna, Sri Murniani Angelina Letsoin, Ratna Chrismiari Purwestri, Ignasius Radix A.P. Jati


Sago is a carbohydrate-rich food that contains resistant starch. In some parts of Indonesia, Malaysia, and Papua New Guinea, sago is a common staple food. Studies have been performed to elucidate the physicochemical and structural properties of sago starches. The paper's objective is to review potential positive physiological responses to sago-based product consumption from previous records. This study is a literature review of preceding published articles related to sago intake in human subjects’ research. The literature search was performed through databases with assigned keywords combination and then selection of the articles based on the criteria. The outcomes of this review concluded that sago had a lower glycemic index with immediate intestinal absorption. Sago-based products could provide a suitable energy source for sustaining physical performance and promoting faster recovery after exercise. It can be an appropriate alternative as an energy source for active healthy individuals.


Sago; glycemic index; physiological response; resistant starch; carbohydrate; supplement.

Full Text:



Abd Rashid, R. S., Dos Mohamed, A. M., Achudan, S. N., & Mittis, P. (2020). Physicochemical properties of resistant starch type III from sago starch at different palm stages. Materials Today: Proceedings, 31, 150–154.

Accurso, A., Bernstein, R. K., Dahlqvist, A., Draznin, B., Feinman, R. D., Fine, E. J., Gleed, A., Jacobs, D. B., Larson, G., & Lustig, R. H. (2008). Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: Time for a critical appraisal. Nutrition & Metabolism, 5(1), 1–8. https://doi.org/10.1186/1743-7075-5-9

Ahmad, H., Singh, R., & Ghosh, A. K. (2009). Glycaemic & insulinaemic responses in men at rest following sago meal. The Indian Journal of Medical Research, 130(2), 160–165.

Arshad, N. H., Zaman, S. A., Rawi, M. H., & Sarbini, S. R. (2018). Resistant starch evaluation and in vitro fermentation of lemantak (native sago starch), for prebiotic assessment. International Food Research Journal, 25(3).

Ashwar, B. A., Gani, A., Shah, A., Wani, I. A., & Masoodi, F. A. (2016). Preparation, health benefits and applications of resistant starch—A review. Starch‐Stärke, 68(3–4), 287–301. https://doi.org/10.1002/star.201500064

Augustin, L. S., Kendall, C. W., Jenkins, D. J., Willett, W. C., Astrup, A., Barclay, A. W., Björck, I., Brand-Miller, J. C., Brighenti, F., & Buyken, A. E. (2015). Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutrition, Metabolism and Cardiovascular Diseases, 25(9), 795–815. https://doi.org/10.1016/j.numecd.2015.05.005

Azkia, M. N., Wahjuningsih, S. B., & Wibowo, C. H. (2021). The nutritional and functional properties of noodles prepared from sorghum, mung bean and sago flours. Food Research, 5(S2), 65–69. https://doi.org/10.26656/fr.2017.5(S2).002

Balakireva, A. V., & Zamyatnin Jr, A. A. (2016). Properties of gluten intolerance: Gluten structure, evolution, pathogenicity and detoxification capabilities. Nutrients, 8(10), 644. https://doi.org/10.3390/nu8100644

Blaak, E. e., Canfora, E. e., Theis, S., Frost, G., Groen, A. k., Mithieux, G., Nauta, A., Scott, K., Stahl, B., van Harsselaar, J., van Tol, R., Vaughan, E. e., & Verbeke, K. (2020). Short chain fatty acids in human gut and metabolic health. Beneficial Microbes, 11(5), 411–455. https://doi.org/10.3920/BM2020.0057

Burlingame, B., & Dernini, S. (2012). Biodiversity and sustainable diets united against hunger 3–5 November 2010 FAO Headquarters, Rome.

Czaja-Bulsa, G. (2015). Non coeliac gluten sensitivity–A new disease with gluten intolerance. Clinical Nutrition, 34(2), 189–194.

Dyg Salwani, A. A., Ahmad, M. N., & Bujang, K. (2018). Maximising production of prebiotic sugar (cellobiose) from sago frond. Malaysian Applied Biology Journal, 47(1), 89–95.

Enghiad, A., Ufer, D., Countryman, A. M., & Thilmany, D. D. (2017). An overview of global wheat market fundamentals in an era of climate concerns. International Journal of Agronomy, 2017.

Escarnot, E., Jacquemin, J.-M., Agneessens, R., & Paquot, M. (2012). Comparative study of the content and profiles of macronutrients in spelt and wheat, a review. BASE. https://popups.uliege.be/1780-4507/index.php?id=8700

Feinman, R. D., Pogozelski, W. K., Astrup, A., Bernstein, R. K., Fine, E. J., Westman, E. C., Accurso, A., Frassetto, L., Gower, B. A., & McFarlane, S. I. (2015). Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base. Nutrition, 31(1), 1–13. https://doi.org/10.1016/j.nut.2014.06.011

Ghosh, A. K., Rahaman, A. A., & Singh, R. (2010). Combination of sago and soy-protein supplementation during endurance cycling exercise and subsequent high-intensity endurance capacity. International Journal of Sport Nutrition and Exercise Metabolism, 20(3), 216–223. https://doi.org/10.1123/ijsnem.20.3.216

Grace, N. C., & Henry, C. J. (2020). The physicochemical characterization of unconventional starches and flours used in Asia. Foods, 9(2), 182. https://doi.org/10.3390/foods9020182

Haliza, W., Purwani, E. Y., & Yuliani, S. (2006). Evaluation Of Enzymatically Resistant Starch and Glycemix Index of Sago Noodle. Jurnal Teknologi dan Industri Pangan, 17(2), 150–150.

Hirao, K., & Igarashi, K. (2003). Effects of Sago Starch Content in the Diet on Lipid Peroxidation and Antioxidative Enzyme Activities in Rats. Journal of Nutritional Science and Vitaminology, 49(1), 76–79. https://doi.org/10.3177/jnsv.49.76

Hyde, P. N., Sapper, T. N., Crabtree, C. D., LaFountain, R. A., Bowling, M. L., Buga, A., Fell, B., McSwiney, F. T., Dickerson, R. M., Miller, V. J., Scandling, D., Simonetti, O. P., Phinney, S. D., Kraemer, W. J., King, S. A., Krauss, R. M., & Volek, J. S. (2019). Dietary carbohydrate restriction improves metabolic syndrome independent of weight loss. JCI Insight, 4(12), 128308.


Jenkins, D. J., Wolever, T. M., Taylor, R. H., Barker, H., Fielden, H., Baldwin, J. M., Bowling, A. C., Newman, H. C., Jenkins, A. L., & Goff, D. V. (1981). Glycemic index of foods: A physiological basis for carbohydrate exchange. The American Journal of Clinical Nutrition, 34(3), 362–366. https://doi.org/10.1093/ajcn/34.3.362

Jung, C.-H., & Choi, K. M. (2017). Impact of high-carbohydrate diet

on metabolic parameters in patients with type 2 diabetes. Nutrients, 9(4), 322. https://doi.org/10.3390/nu9040322

Jusoh, M. R. C., Stannard, S. R., & Mündel, T. (2016a). Physiologic and performance effects of sago supplementation before and during cycling in a warm-humid environment. Temperature, 3(2), 318–327. https://doi.org/10.1080%2F23328940.2016.1159772

Jusoh, M. R. C., Stannard, S. R., & Mündel, T. (2016b). Sago supplementation for recovery from cycling in a warm-humid environment and its influence on subsequent cycling physiology and performance. Temperature, 3(3), 444–454. https://doi.org/10.1080%2F23328940.2016.1179382

Karim, A. A., Tie, A. P.-L., Manan, D. M. A., & Zaidul, I. S. M. (2008). Starch from the sago (Metroxylon sagu) palm tree—Properties, prospects, and challenges as a new industrial source for food and other uses. Comprehensive Reviews in Food Science and Food Safety, 7(3), 215–228. https://doi.org/10.1111/j.1541-4337.2008.00042.x

Kodama, S., Saito, K., Tanaka, S., Maki, M., Yachi, Y., Sato, M., Sugawara, A., Totsuka, K., Shimano, H., & Ohashi, Y. (2009). Influence of fat and carbohydrate proportions on the metabolic profile in patients with type 2 diabetes: A meta-analysis. Diabetes Care, 32(5), 959–965. https://doi.org/10.2337/dc08-1716

Konuma, H., Rolle, R., & Boromthanarat, S. (2012). Adding value to underutilized food resources: Substituting wheat flour with sago starch in cookie formulations. Journal of Agricultural Technology, 8(3), 1077.

Laang, M. S. T. (2018). Potential of native sago starch as prebiotic with an anti-obesity functionality. Potential of native sago starch as prebiotic with an anti-obesity functionality. Master thesis, Universiti Putra Malaysia.

Liebman, M. (2014). When and why carbohydrate restriction can be a viable option. Nutrition, 30(7–8), 748–754. https://doi.org/10.1016/j.nut.2013.11.021

Litaay, C., Indriati, A., & Mayasti, N. K. I. (2021). Fortification of sago noodles with fish meal skipjack tuna (Katsuwonus pelamis). Food Science and Technology. https://doi.org/10.1590/fst.46720

Liu, H., Zhang, M., Ma, Q., Tian, B., Nie, C., Chen, Z., & Li, J. (2020). Health beneficial effects of resistant starch on diabetes and obesity via regulation of gut microbiota: A review. Food & Function, 11(7), 5749–5767. https://doi.org/10.1039/D0FO00855A

Lockyer, S., & Nugent, A. P. (2017). Health effects of resistant starch. Nutrition Bulletin, 42(1), 10–41.

Lokman, E. F., Aziz, S. M. A., Ibrahim, A. S., Yunus, N., Seruji, A. Z. R. A., & Bugam, S. H. (2021). Hepatic Glucose Regulations by Sago (Metroxylon sagu) Resistant Starch in Diabetic Goto Kakizaki Rat. International Journal of Biomedical Science, 17(3), 28-33.

Matthan, N. R., Ausman, L. M., Meng, H., Tighiouart, H., & Lichtenstein, A. H. (2016). Estimating the reliability of glycemic index values and potential sources of methodological and biological variability. The American Journal of Clinical Nutrition, 104(4), 1004–1013. https://doi.org/10.3945/ajcn.116.137208

Meenu, M., & Xu, B. (2019). A critical review on anti-diabetic and anti-obesity effects of dietary resistant starch. Critical Reviews in Food Science and Nutrition, 59(18), 3019–3031. https://doi.org/10.1080/10408398.2018.1481360

Metaragakusuma, A. P., Katsuya, O., & Bai, H. (2016). An Overview of the Traditional use of sago for Sago-based Food Industry in Indonesia. KnE Life Sciences, 119–124. http://dx.doi.org/10.18502/kls.v3i3.382

Mogra, R., & Midha, S. (2013). Value addition of traditional wheat flour vermicelli. Journal of Food Science and Technology, 50(4), 815–820. https://doi.org/10.1007/s13197-011-0403-3

Mohan, V., Unnikrishnan, R., Shobana, S., Malavika, M., Anjana, R. M., & Sudha, V. (2018). Are excess carbohydrates the main link to diabetes & its complications in Asians? The Indian Journal of Medical Research, 148(5), 531. https://doi.org/10.4103%2Fijmr.IJMR_1698_18

Naude, C. E., Schoonees, A., Senekal, M., Young, T., Garner, P., & Volmink, J. (2014). Low carbohydrate versus isoenergetic balanced diets for reducing weight and cardiovascular risk: A systematic review and meta-analysis. PloS One, 9(7), e100652. https://doi.org/10.1371/journal.pone.0100652

Osman, M. H., Yusof, B. N., & Ismail, A. (2021). Glycaemic index and glycaemic load of foods and food products in Malaysia: A review. International Food Research Journal, 28(2), 217–229.

Park, S., Ahn, J., Kim, N.-S., & Lee, B.-K. (2017). High carbohydrate diets are positively associated with the risk of metabolic syndrome irrespective to fatty acid composition in women: The KNHANES 2007–2014. International Journal of Food Sciences and Nutrition, 68(4), 479–487. https://doi.org/10.1080/09637486.2016.1252318

Patterson, M. A., Maiya, M., & Stewart, M. L. (2020). Resistant starch content in foods commonly consumed in the United States: A narrative review. Journal of the Academy of Nutrition and Dietetics, 120(2), 230–244. https://doi.org/10.1016/j.jand.2019.10.019

Purwani, E. Y., Purwadaria, T., & Suhartono, M. T. (2012). Fermentation RS3 derived from sago and rice starch with Clostridium butyricum BCC B2571 or Eubacterium rectale DSM 17629. Anaerobe, 18(1), 55–61. https://doi.org/10.1016/j.anaerobe.2011.09.007

Raigond, P., Ezekiel, R., & Raigond, B. (2015). Resistant starch in food: A review. Journal of the Science of Food and Agriculture, 95(10), 1968–1978.

Schwingshackl, L., & Hoffmann, G. (2013). Long-term effects of low glycemic index/load vs. High glycemic index/load diets on parameters of obesity and obesity-associated risks: A systematic review and meta-analysis. Nutrition, Metabolism and Cardiovascular Diseases, 23(8), 699–706. https://doi.org/10.1016/j.numecd.2013.04.008

Shima, A. R., Salina, H. F., Masniza, M., & Atiqah, A. H. (2012). Viability of Lactic Acid Bacteria in Home Made Yogurt Containing Sago Starch Oligosaccharides. 12(01), 58-62.

Singhania, P. R., & Senray, K. (2012). Glycemic response to amylopectin rich starch present in common fasting foods of India. Nutrition & Food Science, 42(3), 196–203. https://doi.org/10.1108/00346651211228496

Sonia, S., Witjaksono, F., & Ridwan, R. (2015). Effect of cooling of cooked white rice on resistant starch content and glycemic response. Asia Pacific Journal of Clinical Nutrition, 24(4), 620–625.

Thompson, M. S., Dahari, S. I., Shamsuddin, M. S., Rashed, A., &

Sarbini, S. R. (2021). Effects of sago starch on body weight, food intake, caecum short chain fatty acids, adipose tissue, and hepatic lipid content of fat-induced Sprague Dawley rats. International Food Research Journal, 28(5), 1057–1066. https://doi.org/10.47836/ifrj.28.5.19

Tian, S., & Sun, Y. (2020). Influencing factor of resistant starch formation and application in cereal products: A review. International Journal of Biological Macromolecules, 149, 424–431. https://doi.org/10.1016/j.ijbiomac.2020.01.264

Tjokrokusumo, D., Octaviani, F. C., & Saragih, R. (2019). Fortification of Mung bean (Vigna radiata) and Ear mushroom (Auricularia auricula-judae) in dried sago noodles. Journal of Microbial Systematics and Biotechnology, 1(2), 34–40. https://doi.org/10.37604/jmsb.v1i2.30

Topping, D. L., & Clifton, P. M. (2001). Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiological Reviews, 81(3), 1031–1064. https://doi.org/10.1152/physrev.2001.81.3.1031

Vahdat, M., Hosseini, S. A., Khalatbari Mohseni, G., Heshmati, J., & Rahimlou, M. (2020). Effects of resistant starch interventions on circulating inflammatory biomarkers: A systematic review and meta-analysis of randomized controlled trials. Nutrition Journal, 19, 33. https://doi.org/10.1186/s12937-020-00548-6

Wahjuningsih, S. B., Haslina, H., & Marsono, M. (2018). Hypolipidaemic Effects of High Resistant Starch Sago and Red Bean Flour- based Analog Rice on Diabetic Rats. Materia Socio-Medica, 30(4), 232–239. https://doi.org/10.5455/msm.2018.30.232-239

Wahjuningsih, S. B., Haslina, H., & Putranto, A. T. (2020). Effect of Sago Analogue Rice and Red Bean Diet to the Improvement of β-cell Pancreas in Streptozotocin-Nicotinamide (STZ-NA) Induced Diabetic Rats. Current Research in Nutrition and Food Science, 8(2), 667. http://dx.doi.org/10.12944/CRNFSJ.8.2.32

Wahjuningsih, S. B., Marsono, Y., Praseptiangga, D., & Haryanto, B. (2016). Resistant Starch Content and Glycaemic Index of Sago (Metroxylon spp.) Starch and Red Bean (Phaseolus vulgaris) Based Analogue Ric. Science Alert, 15(7), 667-672. https://doi.org/10.3923/pjn.2016.667.672

Zaman, S. A., & Sarbini, S. R. (2016). The potential of resistant starch as a prebiotic. Critical Reviews in Biotechnology, 36(3), 578–584. https://doi.org/10.3109/07388551.2014.993590

Zi-Ni, T., & Rosma, A. (2020). Selective Fermentation and Prebiotic Index of Sago (Metroxylon sagu) Resistant Starches Type III by Rat Fecal Cultures. IOP Conference Series: Materials Science and Engineering, 716, 012002. https://doi.org/10.1088/1757-899X/716/1/012002

Zi-Ni, T., Rosma, A., Napisah, H., Karim, A. A., & Liong, M.-T. (2015). Characteristics of Metroxylon sagu resistant starch type III as prebiotic substance. Journal of Food Science, 80(4), H875–H882. https://doi.org/10.1111/1750-3841.1281

DOI: http://dx.doi.org/10.30742/jikw.v11i2.2443


  • There are currently no refbacks.

Copyright (c) 2022 Budhi Setiawan, Fetriyuna Fetriyuna, Sri Murniani Angelina Letsoin, Ratna Chrismiari Purwestri, Ignasius Radix A.P. Jati

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Jurnal Ilmiah Kedokteran Wijaya Kusuma is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License