Antiobesity Potential of Butterfly Pea Flower (Clitoria Ternatea): A Literature Review

Nur Aini Djunet, Muflihah Rizkawati

Abstract


Obesity is a health problem with an increasing prevalence every year in many countries including Indonesia.  Obese patients are at risk for complications related to some non-communicable diseases. The difficulty of losing weight in obese patients is due to low awareness of a good lifestyle, appropriate dietary patterns, and discipline in taking drugs to prevent complications. However, the need for drug consumption takes a long time. The risk of side effects arising from long-term drug use needs to be considered. Using herbal plants as an additional dietary intervention could be a better choice. This review described the benefits of the butterfly pea (Clitoria ternatea) flower as antiobesity. This study is a literature review by searching preceding published articles in Pubmed, ScienceDirect, Cochrane, and Google Scholar journals. The keywords used are (Clitoria ternatea) OR (Bunga Telang) OR (Butterfly pea) AND (Obesity) OR (Antiobesity). Articles are limited by publication period from 2012 to 2022 and then selected based on the criteria. This literature review concluded that the administration of Clitoria ternatea extracts (CTE) can become an alternative antiobesity by inhibiting weight gain, increasing adipose lipolysis, and decreasing the expression of adipogenic and lipogenic proteins.



Keywords


antiobesity; butterfly pea flower; Clitoria ternatea

Full Text:

PDF PDF

References


Adel, M. M. S., Tabatabaei-Malazy, O., Rahimi, R., Daniali, M., & Khashayar, P. (2021). Targeting dyslipidemia by herbal medicines: A systematic review of meta-analyses. Journal of Ethnopharmacology, 280. https://doi.org/https://doi.org/10.1016/j.jep.2021.114407

Andrew, G. J. A. C. (2017). Cyclotides: Overview and biotechnological applications Andrew. Chembiochem, 18(14), 1350–1363. https://doi.org/10.1002/cbic.201700153.Cyclotides

Ayuningtyas, D., Kusuma, D., Amir, V., Tjandrarini, D. H., & Andarwati, P. (2022). Disparities in Obesity Rates among Adults: Analysis of 514 Districts in Indonesia. Nutrients, 14(16), 1–18. https://doi.org/10.3390/nu14163332

Bao, Z., Yuan, X., Duan, S., & Dong, X. (2014). Clinical implication of changes in serum adiponectin in patients with hepatogenic diabetes. Scientific Reports, 4, 10–12. https://doi.org/10.1038/srep05560

Brouwers, B., de Oliveira, E. M., Marti-Solano, M., Monteiro, F. B. F., Laurin, S. A……., & Mokrosiński, J. (2021). Human MC4R variants affect endocytosis, trafficking, and dimerization revealing multiple cellular mechanisms involved in weight regulation. Cell Reports, 34(12). https://doi.org/10.1016/j.celrep.2021.108862

Burki, T. (2021). European Commission classifies obesity as a chronic disease. The Lancet Diabetes and Endocrinology, 9(7), 418. https://doi.org/10.1016/S2213-8587(21)00145-5

Burman, R., Yeshak, M. Y., Larsson, S., Craik, D. J., Rosengren, K. J., & Göransson, U. (2015). Distribution of circular proteins in plants: Large-scale mapping of cyclotides in the Violaceae. Frontiers in Plant Science, 6(October). https://doi.org/10.3389/fpls.2015.00855

Chayaratanasin, P., Caobi, A., Suparpprom, C., Saenset, S., Pasukamonset, P…… & Adisakwattana, S. (2019). Clitoria ternatea Flower Petal Extract Inhibits Adipogenesis and Lipid Accumulation in 3T3-L1. Molecules, 24(1894), 1–16.

Cisternas, P., Martinez, M., Ahima, R. S., William Wong, G., & Inestrosa, N. C. (2019). Modulation of Glucose Metabolism in Hippocampal Neurons by Adiponectin and Resistin. Molecular Neurobiology, 56(4), 3024–3037. https://doi.org/https://doi.org/10.1007/s12035-018-1271-x

Da Silva Rosa, S. C., Liu, M., & Sweeney, G. (2021). Adiponectin synthesis, secretion, and extravasation from circulation to interstitial space. Physiology (Bethesda), 36(3), 134–149. https://doi.org/https://doi.org/10.1152/PHYSIOL.00031.2020

Eliasen, R., Daly, N. L., Wulff, B. S., Andresen, T. L., Conde-Frieboes, K. W., & Craik, D. J. (2012). Design, synthesis, structural, and functional characterization of novel melanocortin agonists based on the cyclotide kalata B1. Journal of Biological Chemistry, 287(48), 40493–40501. https://doi.org/10.1074/jbc.M112.395442

Halah, M. P., Marangon, P. B., Antunes-rodrigues, X. J., & Elias, X. L. L. K. (2018). Neonatal nutritional programming impairs adiponectin effects on energy homeostasis in the adult life of male rats. https://doi.org/10.1152/ajpendo.00358.2017

Hiromoto, T., Honjo, E., Tamada, T., Noda, N., Kazuma, K., Suzuki, M., & Kuroki, R. (2013). Crystal structure of UDP-glucose: anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea. Journal of Synchrotron Radiation, 20(6), 894–898. https://doi.org/10.1107/S0909049513020712

Karvela, A., Kostopoulou, E., Rojas, G.A.P., Avgeri, A., Pappa, A., …..& Spiliotis, B. (2020). Adiponectin signaling and impaired GTPase Rab5 expression in adipocytes of adolescents with obesity. Horm Res Paediatr, 93, 287–296. https://doi.org/https://doi.org/10.1159/000510851

Kemenkes RI. (2018). Hasil Riset Kesehatan Dasar Tahun 2018. Kementrian Kesehatan RI, 53(9), 1689–1699.

Li, T., Zhang, L., Jin, C., Xiong, Y., Cheng, Y. Y., & Chen, K. (2020). Pomegranate flower extract bidirectionally regulates the proliferation, differentiation, and apoptosis of 3T3-L1 cells through the regulation of PPARγ expression mediated by the PI3K-AKT signaling pathway. Biomedicine and Pharmacotherapy, 131(September), 110769. https://doi.org/10.1016/j.biopha.2020.110769

Li, X., Zhang, D., Vatner, D. F., Goedeke, L., Hirabara, S. M., & Zhang, Y. (2020). Mechanisms by which adiponectin reverses high-fat diet-induced insulin resistance in mice. 117(51). https://doi.org/10.1073/pnas.1922169117

Malandrino, M. I., Fucho, R., Weber, M., Calderon-Dominguez, M., Mir, J. F., ……..& Herrero, L. (2015). Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation. American Journal of Physiology-Endocrinology and Metabolism, 308(9), E756–E769. https://doi.org/10.1152/ajpendo.00362.2014

Marenne, G., Hendricks, A. E., Perdikari, A., Bounds, R., Payne, F.,… & Barroso, I. (2020). Exome Sequencing Identifies Genes and Gene Sets Contributing to Severe Childhood Obesity, Linking PHIP Variants to Repressed POMC Transcription. Cell Metabolism, 31(6), 1107-1119.e12. https://doi.org/10.1016/j.cmet.2020.05.007

Misra, A., & Shrivastava, U. (2013). Obesity and dyslipidemia in South Asians. Nutrients, 5(7), 2708–2733. https://doi.org/10.3390/nu5072708

Nguyen, K. N. T., Nguyen, G. K. T., Nguyen, P. Q. T., Ang, K. H., Dedon, P. C., & Tam, J. P. (2016). Immunostimulating and Gram-negative-specific antibacterial cyclotides from the butterfly pea (Clitoria ternatea). FEBS Journal, 283(11), 2067–2090. https://doi.org/10.1111/febs.13720

Oguis, G. K., Gilding, E. K., Jackson, M. A., & Craik, D. J. (2019). Butterfly pea (Clitoria ternatea), is a cyclotide-bearing plant with applications in agriculture and medicine. Frontiers in Plant Science, 10(May), 1–23. https://doi.org/10.3389/fpls.2019.00645

Permatasari, H. K., Nurkolis, F., Gunawan, W., Ben, Yusuf, V. M., ……. & Tsopmo, A. (2022). Modulation of gut microbiota and markers of metabolic syndrome in mice on cholesterol and fat-enriched diet by butterfly pea flower kombucha. Current Research in Food Science, 5(August), 1251–1265. https://doi.org/10.1016/j.crfs.2022.08.005

Qin, C., Zhao, W., Yan, X., Yang, G., Yang, L., ……& Nie, G. (2022). Effects of Adiponectin on Glucose Metabolism in the Hepatopancreas of Grass Carp (Ctenopharyngodon idella). Aquaculture Nutrition, 2022, 1–14. https://doi.org/10.1155/2022/5699931

Ramírez-Moreno, E., Arias-Rico, J., Jiménez-Sánchez, R. C., Estrada-Luna, D., Jiménez-Osorio, A. S., …… & Sandoval-Gallegos, E. M. (2022). Role of Bioactive Compounds in Obesity: Metabolic Mechanism Focused on Inflammation. Foods, 11(9), 1–23. https://doi.org/10.3390/foods11091232

Rayalam, S., Della-Fera, M. A., & Baile, C. A. (2008). Phytochemicals and regulation of the adipocyte life cycle. Journal of Nutritional Biochemistry, 19(11), 717–726. https://doi.org/10.1016/j.jnutbio.2007.12.007

Su, S. C., Chiang, C. F., Hsieh, C. H., Lu, G. H., Liu, J. S., …… & Lee, C. H. (2021). Growth arrest-specific 6 modulates adiponectin expression and insulin resistance in adipose tissue. Journal of Diabetes Investigation, 12(4), 485–492. https://doi.org/10.1111/jdi.13412

Sundaram, S., Palaniappan, B., Nepal, N., Chaffins, S., Sundaram, U., & Arthur, S. (2019). Mechanism of dyslipidemia in obesity—unique regulation of ileal villus cell brush border membrane sodium–bile acid cotransport. Cells, 8(10). https://doi.org/10.3390/cells8101197

Sung, H. K., Mitchell, P. L., Gross, S., Marette, A., & Sweeney, G. (2022). ALY688 elicits adiponectin-mimetic signaling and improves insulin action in skeletal muscle cells. American Journal of Physiology - Cell Physiology, 322(2), C151–C163. https://doi.org/10.1152/ajpcell.00603.2020

Tang, Y., Wang, Y., Chen, C., Chan, C., Tsai, F., & Chen, S. (2022). Genetic and Functional Effects of Adiponectin in Type 2 Diabetes Mellitus Development.

Thilavech, T., Adisakwattana, S., Channuwong, P., Radarit, K., Jantarapat, K., Ngewlai, K., Sonprasan, N., & Chusak, C. (2021). Clitoria ternatea flower extract attenuates postprandial lipemia and increases plasma antioxidant status responses to a high-fat meal challenge in overweight and obese participants. Biology, 10(10).

https://doi.org/10.3390/biology10100975

Vaamonde, J. G., & Álvarez-Món, M. A. (2020). Obesity and overweight. Medicine (Spain), 13(14), 767–776. https://doi.org/10.1016/j.med.2020.07.010

Vidana Gamage, G. C., Lim, Y. Y., & Choo, W. S. (2021). Anthocyanins From Clitoria ternatea Flower: Biosynthesis, Extraction, Stability, Antioxidant Activity, and Applications. Frontiers in Plant Science, 12(December), 1–17. https://doi.org/10.3389/fpls.2021.792303

Wang, Y., Liu, T., Xie, Y., Li, N., Liu, Y., ….. & Granato, D. (2022). Clitoria ternatea blue petal extract protects against obesity, oxidative stress, and inflammation induced by a high-fat, high-fructose diet in C57BL/6 mice. Food Research International, 162(September). https://doi.org/10.1016/j.foodres.2022.112008

WHO Regional Office for Europe. (2022). WHO European Regional Obesity Report 2022.

Yang, W., Yang, C., Luo, J., Wei, Y., Wang, W., & Zhong, Y. (2018). Adiponectin promotes preadipocyte differentiation via the PPARy pathway. Molecular Medicine Reports, 17(1), 428–435. https://doi.org/10.3892/mmr.2017.7881

Ye, R., Holland, W. L., Gordillo, R., Wang, M., Wang, Q. A., ….. & Scherer, P. E. (2014). Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes β-cell regeneration. ELife, 3, 1–21. https://doi.org/10.7554/eLife.03851

Zheng, F., Zhang, S., Lu, W., Wu, F., Yin, X., ….. & Li, H. (2014). Regulation of insulin resistance and adiponectin signaling in adipose tissue by liver X receptor activation highlights a cross-talk with PPARγ. PLoS ONE, 9(6), 1–11. https://doi.org/10.1371/journal.pone.0101269




DOI: http://dx.doi.org/10.30742/jikw.v12i2.2670

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Muflihah Rizkawati

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Jurnal Ilmiah Kedokteran Wijaya Kusuma is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License