The Effect of Black Cumin Seed (Nigella sativa l.) Extract to Alloxan Induces Pancreatic Tissue Catalase Enzyme Activity of Male Wistar Rats (Rattus norvegicus)

Qonita Achmad, Irmawati Dikman, Sulistiana Prabowo

Abstract


Alloxan causes the formation of reactive oxygen through the reduction process of alloxan (dialuric acid) in the β cells of pancreas. Free radicals cause damage  and decrease catalase enzyme activity. Black cumin seeds extract which contain carotenoids, thymoquinone, carvacrol, 4-terpineol, t-anethole, and tert-butylhydroquinone (TBHQ) has antioxidant activity that is expected to inhibit reactive oxygen species (ROS) that is expected to increase pancreatic catalase activity. This study used 24 male Wistar rats, divided into 3 groups:1)group of rats fed with standard food, 2)group of rats induced by alloxan 125mg/kg /BB intraperitoneally on day 1, 3)groups of rats induced by alloxan 125mg/kg/BB intraperitoneally on day 1 and were given by black cumin seed extract 2500mg/kg/BB orally on day 4 until 17. On the 18th day of all rats were sacrificed and pancreatic tissue catalase activity were measured by the spectrophotometric method. The results of One-Way ANOVA showed significant difference (p=0.003) pancreatic tissue catalase activity of groups of rats fed with standard food (1696,96U/g±414,10U/g) compared with group of rats induced by alloxan (1287,58U/g±88,45U/g). There was significant difference (p=0.001) of pancreatic tissue catalase activity of groups of rats induced by alloxan (1287,58U/g±88,45U/g) with a group of rats induced by alloxan and given with black cumin seed extract (1764,83U/g±199,69U/g). The conclusion of this study showed that the administration of alloxan significantly decreased pancreatic tissue catalase activity of rat and black cumin seed extract significantly increased catalase activity because cumin extract has antioxidant effects.

Keywords


Nigella sativa L.; Alloxan; catalase enzyme

Full Text:

PDF

References


Badary, OA and Gamal El-Din, 2003. Inhibitory Effect of Thymoquinone Againts 20-Methylchlolanthrene-induced Fibrosarcoma Tumorrigenesis. Cancer Detection and Prevention Journal, 25:362-368.

Bambang Setiawan dan Eko Suhartono, 2005. Stres Oksidatif dan Peran Antioksidan pada Diabetes Melitus. Majalah Kedokteran Indonesia, Vol 55, No 2, hal 87-90.

Burist M dan F Bucar, 2000. Antioxidant Activity of Nigella sativa Essential Oil. Abstract of Phytotherapy, 14(5): 323-328.

Kemkes, 2014. Waspada Diabetes. http://www.kemkes.go.id/resources/download/pusdatin/infodatin/infodatin-diabetes

Meral IN, Donmez B, Baydas F, Belge M, Kanter, 2004. Effect of Nigella sativa L. on heart rate and some haematological value of alloxan-induced diabetic rabbits. Scand. J. Lah. Anim. Sci. 1 (31). http://biomedicum.ut.ee/sjlas/31_1_49-53.pdf

Nagi MN and Almakki HA, 2009. Thymoquinone supplementation induced quinone reductase and glutathione transferase in mice liver: possible role in protection against chemical carcinogenesis and toxicity. Phytother. Res., 23: 1295-1298.

Nugroho A E, 2006. Hewan Percobaan Diabetes Mellitus: Patologi dan Mekanisme Aksi Diabetogenik, Biodiversitas, 7,4,378-382.

Purnomo Suryohandono, 2000. Oksidan, Antioksidan, dan Radikal Bebas. Buku Naskah Lengkap Simposium Pengaruh Radikal Bebas Terhadap Penuaan dalam Rangka Lustrum IX FKUA 7 September 1955-2000.

Robert KM, Daryl K, Granner & Victor W, Rodwell, 2009, Biokimia Harper ed 27,EGC, Jakarta.

Rowland NE and Bellush LL, 1989. Diabetes Mellitus: Stress. Neurochemistry and Behavior, Neuroscience and Biobehavioral Reviews, 13 (4): 199-206

Szkudelski T, 2001, The Mechanism of Alloxan and Streptozotocin Action In Beta Cells of The Rat Pancreas, Physiology Research, 50: 536 – 540.

Truscott TG, 1990. The photophysics and photochemistry of the carotenoids. J. Photochem. Photobiol. B Biol. 6: 359-371.

Walde SS, Dohle C, Schott-Ohly P, Gleichmann H, 2002. Molecular target structure in alloxan-induced diabetes in mice, Life Sciences, 71, 1681 – 1694

WHO. 2003. Traditional Medicine. http://www.who.int/mediacentre/factsheets/fs134/en/.

Wilson GL and LeDoux SP,1989. The Role of Chemical in The Etiology of Diabetes Mellitus, Toxicologic Pathology, 17: 357 – 362.

Wilson GL, Patton NJ, McCord JM, Mullins DW, Mossman BT, 1984, Mechanism of streptozotocin and alloxan-induced damage in rat beta-cells, Diabetologia., 27(6): 587 – 591.

Winarsih., 2007, Antioksidan Alami dan Radikal Bebas, Potensi dan Aplikasinya dalam Kesehatan, Kansius.

Young AJ & Lowe GM, 2001. Antioxidant and prooxidant properties of carotenoids. Arch. Biochem. Biophys. 385 : 20-27

Yuriska F, Anindhita (2009) Efek Aloksan terhadap Kadar Glukosa Darah Tikus Wistar. Undergraduate thesis, Semarang: Universitas Diponegoro.




DOI: http://dx.doi.org/10.30742/jikw.v7i1.314

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Qonita Achmad, Irmawati Dikman, Sulistiana Prabowo

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Jurnal Ilmiah Kedokteran Wijaya Kusuma is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License