Potensi Nano Analog RN-18 (NARN-18) Berbasis Nanopartikel PLGA-CS-PEG dalam Penatalaksanaan HIV-1

Gede Setula Narayana, I Kadek Wahyu Putra Dyatmika, Widia Danis Swari, I Gede Putu Supadmanaba


Acquired Immune Deficiency Syndrome (AIDS) is the cause of death of million people in the world in 2016. The prevalence of Human Immunodeficiency Virus-1 (HIV-1) infection in Indonesia is still high and number of death caused by HIV-1-related diseases shows an apprehensive number. Treatment of HIV/AIDS nowadays is not effective to eradicate HIV-1 and also cause adverse effects. Previous research found RN-18 as a specific antagonistic molecule for viral infectivity factor (Vif) that can trigger Vif degradation and maintain intracellular A3G level. The aim of this review is to examine the potential of NARN-18 based PLGA-CS-PEG nanoparticles through oral administration in the management of HIV-1 infection. Method of this article is using literature review method. Literature searching is done by using “A3G”, “HIV-1”, “PLGA-CS-PEG”, “RN-18”, and “Vif” as keywords in search engine. 13a molecule, that is the analogue of RN-18, is used in the modality because it has better effectiveness and solubility compared with RN-18. By using PLGA, PEG, and chitosan (CS) as nanoparticles that carries RN-18 analogue makes the modality can be taken orally and targets T cell as soon as it enters the blood stream. It also can increase the efficiency of drug release and drug loading of the modality. NARN-18 constructed by using PLGA-PEG-CS nanoparticle makes the modality can be administered orally, increase its half-life in the body, and also increase the inhibition effect of RN-18 analogue. Therefore, this combination is one of the potential therapy in HIV-1 infection treatment.


A3G; Vif; RN-18; PLGA-CS-PEG

Full Text:



Adolph M, Webb J, dan Chelico L, 2013. Retroviral Restriction Factor APOBEC3G Delays the Initiation of DNA Synthesis by HIV-1 Reverse Transcriptase. PLoS ONE. 8(5): e64196.

Aguilar Z, 2013. Targeted Drug Delivery. Nanomaterials for Medical Applications: 181-234.

Alkie TN, Taha-Abdelaziz K, Barjesteh N, Bavananthasivam J, Hodgins DC and Sharif S, 2017. Characterization of innate responses induced by PLGA encapsulated-and soluble TLR ligands in vitro and in vivo in chickens. PLoS One. 12(1): e0169154.

Andrew A and Strebel K, 2014. HIV-1 Accessory Proteins: Vpu and Vif. Methods Mol Biol. 1087: 135-158.

Armitage AE, Deforche K, Chang CH, Wee W, Kramer B, et al, 2012. APOBEC3G-Induced Hypermutation of Human Immunodeficiency Virus Type-1 Is Typically a Discrete “All or Nothing” Phenomenon. PLoS Genetics. 8(3): e1002550.

Cadima-Couto I and Goncalves J, 2010. Towards Inhibition of Vif-APOBEC3G Interaction: Which Protein to Target?. Adv Virol. 2010: 1-10.

Chandra E, Mudhakir D, and Ws AH, 2014. Studi Biodistribusi Dan Farmakokinetik Nanokarier PLGA-Poloxamer Bertanda Radioisotop Iodium-131 Pada Mencit. Research and Development on Nanotechnology in Indonesia. 1(2): 39-47.

Chaurasiya KR, McCauley MJ, Wang W, Qualley DF, Wu T, et al 2013. Oligomerization Transforms Human APOBEC3G From an Efficient Enzyme to a Slowly Dissociating Nucleic Acid-Binding Protein. Nature Chemistry. 6(1): 28-33.

Cimarelli A and Darlix J, 2014. HIV-1 Reverse Transcription. Methods Mol Biol. 1087: 55-70.

Cihlar T, and Ray AS, 2010. Nucleoside and Nucleotide HIV Reverse Transcriptase Inhibitors: 25 Years After Zidovudine. Antiviral Res. 85(1): 39-58.

Collins D and Collins K, 2014. HIV-1 Accessory Proteins Adapt Cellular Adaptors to Facilitate Immune Evasion. PLoS Pathogens. 10(1): e1003851.

Das A, Harwig A and Berkhout B, 2011. The HIV-1 Tat Protein Has a Versatile Role in Activating Viral Transcription. Journal of Virology. 85(18): 9506-9516.

Fairley SJ, Singh SR, Yilma AN, Waffo AB, Subbarayan P, et al, 2013. Chlamydia Trachomatis Recombinant MOMP Encapsulated in PLGA Nanoparticles Triggers Primarily T helper 1 Cellular and Antibody Immune Responses in Mice: a Desirable Candidate Nanovaccine. International Journal of Nanomedicine. 8: 2085-2099.

Desimmie BA, Delviks-Frankenberry KA, Burdick R, Qi D, Izumi T, et al, 2014. Multiple APOBEC3 Restriction Factors for HIV-1 and One Vif to Rule Them All. Journal of molecular biology. 426(6): 1220-1245.

Ebrahimian M, Hashemi M, Maleki M, Abnous K Hashemitabar G, 2016. Induction of a Balanced Th1/Th2 Immune Responses by Co-Delivery of PLGA/Ovalbumin Nanospheres and Cpg Odns/PEI-SWCNT Nanoparticles as TLR9 Agonist in BALB/C Mice. International journal of pharmaceutics. 515(1-2): 708-720.

Engelman A, and Cherepanov P, 2012. The Structural Biology of HIV-1: Mechanistic and Therapeutic Insights. Nature Reviews Microbiology. 10(4): 279-290.

Hajimahdi Z and Zarghi A, 2016. Progress in HIV-1 Integrase Inhibitors: A Review of their Chemical Structure Diversity. Iran J Pharm Res. 15(4): 595-628.

Hamdy S, Haddadi A, Shayeganpour A, Samuel J and Lavasanifar A, 2011. Activation of Antigen-Specific T Cell-Responses by Mannan-Decorated PLGA Nanoparticles. Pharm Res. 28(9): 2288-2301.

Hølvold L, Fredriksen B, Bøgwald J and Dalmo R, 2013. Transgene and Immune Gene Expression Following Intramuscular Injection of Atlantic Salmon (Salmo Salar L.) With DNA-Releasing PLGA Nano-And Microparticles. Fish & shellfish immunology. 35(3): 890-899.

Hu W and Hughes S, 2012. HIV-1 Reverse Transcription. Cold Spring Harb Perspect Med. 2(10): a006882.

Khan N, Jameel J, Jameel N and Rheman S, 2017. An overview: Biosynthesized Nanoparticles with their Potential Applications. Glob J Nano. 2(1): 5-8.

Kobayashi T, Koizumi Y, Takeuchi JS, Misawa N, Kimura Y, et al, 2014. Quantification of Deaminase Activity-Dependent and -Independent Restriction of HIV-1 Replication Mediated by APOBEC3F and APOBEC3G through Experimental-Mathematical Investigation. Journal of Virology. 88(10): 5881-5887.

Kumar A, Vimal A, Kumar A. 2016. Why Kitosan? From properties to Perspective of Mucosal Drug Delivery. Int J Biol Macromol. 91:615–22.

Li J, Mao J, Tang J, Li G, Fang F, et al, 2017. Surface Spermidine Functionalized Pegylated Poly(Lactide-Co-Glycolide) Nanoparticles for Tumor-Targeted Drug Delivery. RSC Advances. 7(37): 22954-22963.

Lucas S dan Nelson A, 2014. HIV and the Spectrum of Human Disease. The Journal of Pathology. 235(2): 229-241.

Maartens G, Celum C, Lewin SR, 2014. HIV Infection: Epidemiology, Pathogenesis, Treatment, and Prevention. The Lancet. 384(9989): 258-271.

Madani N and Kabat D, 2000. Cellular and Viral Specificities of Human Immunodeficiency Virus Type 1 Vif Protein. Journal of virology. 74(13): 5982-5987.

Malatesta M, Grecchi S, Chiesa E, Cisterna B, Costanzo M, et al, 2015. Internalized Chitosan Nanoparticles Persist for Long Time in Cultured Cells. Eur J Histochem. 59(1): 17–21.

Nathans R, Cao H, Sharova N, Ali A, Sharkey M, et al, 2008. Small-molecule Inhibition of HIV-1 Vif. Nature Biotechnology. 26(10): 1187-1192.

Neeta MM, Satija S, Pandey P, and Dahiya M, 2016. Relevance of Ionotropic Gelation Technique in the Development of Floating Multiparticulate Drug Delivery Systems. Int J Adv Sci Research. 1(4): 54-59.

Okada A and Iwatani Y, 2016. APOBEC3G-Mediated G-To-A Hypermutation of the HIV-1 Genome: the Missing Link in Antiviral Molecular Mechanisms. Frontiers in microbiology. 7: 2027.

Parveen S and Sahoo S, 2011. Long Circulating Chitosan/PEG Blended PLGA Nanoparticle for Tumor Drug Delivery. European Journal of Pharmacology. 670(2-3): 372-383.

Rafiei P and Haddadi A, 2017. Docetaxel-loaded PLGA and PLGA-PEG Nanoparticles for Intravenous Application: pharmacokinetics and biodistribution profile. Int J of Nanomedicine. 12: 935-947.

Rawson J, Landman S, Reilly C and Mansky L, 2015. HIV-1 and HIV-2 Exhibit Similar Mutation Frequencies and Spectra in the Absence of G-to-A Hypermutation. Retrovirology. 12(1): 60

Sarti F, Perera G, Hintzen F, Kotti K, Karageorgiou V, et al, 2011. In Vivo Evidence of Oral Vaccination with PLGA Nanoparticles Containing the Immunostimulant Monophosphoryl Lipid A. Biomaterials. 32(16): 4052-4057.

Seitz R, 2016. Human Immunodeficiency Virus (HIV). Transfusion Medicine and Hemotherapy. 43(3): 203-222.

Sharma A, Vora R, Modi M, Sharma A, and Marfatia Y, 2008. Adverse effects of Antiretroviral Treatment. Indian J Dermatol Venereol Leprol. 74(3): 234-237.

Sheehy AM, Gaddis NC, Choi JD, Malim MH, 2002. Isolation of a Human Gene that Inhibits HIV-1 Infection and is Suppressed by the Viral Vif Protein. Nature. 418(6898): 646-650.

Simon V, Bloch N and Landau N, 2015. Intrinsic Host Restrictions to HIV-1 and Mechanisms of Viral Escape. Nature Immunology. 16(6): 546-553.

Taamalli A, Contreras MDM, Abu-Reidah, IM, Trabelsi N, and Ben Youssef N, 2019. Quality of Phenolic Compounds: Occurrence, Health Benefits, and Applications in Food Industry. Journal of Food Quality. 2019.

The Joint United Nations Programme on HIV/AIDS (UNAIDS), 2019. Indonesia. https://www.unaids.org/en/regionscountries/countries/indonesia

Usach I, Melis V and Peris JE, 2013. Non‐Nucleoside Reverse Transcriptase Inhibitors: A Review on Pharmacokinetics, Pharmacodynamics, Safety and Tolerability. Journal of the International AIDS Society. 16(1): 18567.

Wang X, Ao Z, Chen L, Kobinger G, Peng J, et al, 2012. The Cellular Antiviral Protein APOBEC3G Interacts with HIV-1 Reverse Transcriptase and Inhibits its Function during Viral Replication. Journal of Virology. 86(7): 3777-3786.

Wang Z, Wakae K, Kitamura K, Aoyama S, Liu G, et al, 2013. APOBEC3 Deaminases Induce Hypermutation in Human Papillomavirus 16 DNA upon Beta Interferon Stimulation. Journal of Virology. 88(2): 1308-1317.

Weil AF, Ghosh D, Zhou Y, Seiple L, McMahon MA et al, 2013. Uracil DNA Glycosylase Initiates Degradation Of HIV-1 Cdna Containing Misincorporated Dutp and Prevents Viral Integration. PNAS. 110(6): E448-E457.

Wensing A, van Maarseveen N, and Nijhuis M, 2010. Fifteen Years of HIV Protease Inhibitors: Raising the Barrier to Resistance. Antiviral Research. 85(1): 59-74.

Wilen C, Tilton J, and Doms R, 2012. HIV: Cell Binding and Entry. Cold Spring Harbor Perspectives in Medicine. 2(8): a006866-a006866.

Wu G, Zhou F, Ge L, Liu X and Kong F, 2012. Novel Mannan-PEG-PE Modified Bioadhesive PLGA Nanoparticles for Targeted Gene Delivery. Journal of Nanomaterials. 2012(11): 1-9.

Yeh T, Hsu L, Tseng M, Lee P, Sonjae K, Ho Y and Sung H, 2011. Mechanism and Consequence of Chitosan-mediated Reversible Epithelial Tight Junction Opening. Biomaterials. 32(26): 6164-6173.

Zhang J, Zhu X, Jin Y, Shan W and Huang Y, 2014. Mechanism Study of Cellular Uptake and Tight Junction Opening Mediated by Goblet Cell-Specific Trimethyl Chitosan Nanoparticles. Molecular Pharmaceutics. 11(5): 1520-1532.

Zhao R and Bukrinsky M, 2014. HIV-1 Accessory Proteins: VpR. Methods Mol Biol. 1087: 125-134.

Zhou M, 2017. Synthesis, Biological Evaluation and Molecular Docking Study of N -(2-Methoxyphenyl)-6-((4-Nitrophenyl)Sulfonyl) Benzamide Derivatives as Potent HIV-1 Vif Antagonists. Eur J Med Chem. 129: 310-324.

DOI: http://dx.doi.org/10.30742/jikw.v9i2.864


  • There are currently no refbacks.

Copyright (c) 2020 Gede Setula Narayana, I Kadek Wahyu Putra Dyatmika, Widia Danis Swari, I Gede Putu Supadmanaba

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



Jurnal Ilmiah Kedokteran Wijaya Kusuma 

ISSN: 1978-2071(print); 2580-5967 (online)
Published by the Institute for Research and Community Services (LPPM) of University of Wijaya Kusuma Surabaya.
Surabaya, Indonesia
Creative Commons License
All publications by Jurnal Ilmiah Kedokteran Wijaya Kusuma are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
counter View My Stats