Efek Kadmium terhadap Kadar Glukosa Hepar Tikus Putih (Rattus norvegicus) in Vitro
Abstract
Mekanisme kadmium menginduksi toksisitas pada hepar yaitu dengan menimbulkan stres oksidatif. Stres oksidatif menghambat enzim-enzim yang berperan dalam proses metabolisme glukosa. Penelitian ini bertujuan untuk menganalisis perbedaan kadar glukosa pada homogenat hepar. Penelitian ini merupakan penelitian eksperimental laboratorik yang dilakukan pada 4 kelompok: kelompok P0 yang tidak dipajankan Cd, kelompok P1 dipajankan Cd 0,03 mg/L, kelompok P2 dipajankan Cd 0,3 mg/L, dan kelompok P3 dipajankan Cd 3 mg/L. Hasil penelitian didapatkan rata-rata kadar glukosa pada kelompok P0 sebesar 21.667 μM, kelompok P1 sebesar 33.278 μM, kelompok P2 sebesar 69.889 μM, dankelompok P3 sebesar 150.667 μM. Melalui uji statistik Kruskal-Wallis didapatkan perbedaan yang bermakna p=0,000 (p<0,05) dan uji pos hoc Mann-Whitney juga menunjukkan perbedaan yang bermakna pada semua kelompok. Dapat disimpulkan bahwa semakin tinggi konsentrasi pemajanan Cd terhadap homogenat hepar maka semakin tinggi pula peningkatan kadar glukosa pada hepar tikus.
Keywords
Full Text:
PDFReferences
Adikwu E, Deo O, Geoffrey OBP, 2013. Hepatotoxicity of cadmium and roles of mitigating agents. British Journal of Pharmacology and Toxicology. 4(6): 222-231.
Al Rikabi AA, Jawad AADH, 2013. Protective effect of ethanolic ginger extract agains cadmium toxicity in male rabbits. Bas J Vet Res. 12(1): 13-29.
Almeida JA, Novelli ELB, SilvaMDP, Junior RA, 2001. Environmental cadmium exposure and metabolic responses of the Nile tilapia, Oreochromis niloticus. Environmental Polution. 114; 169-175.
Anindya, Muhyi R, Suhartono E, 2016. Risiko penyakit jantung koroner akibat pajanan kadmium melalui pengukuran kadar kolesterol dan circulating endothelial cells darah tikus putih. Berkala Kedokteran. 12(2): 153-163
Bernard A. 2008. Cadmium and its adverse effect on human health. Indian Journal of Medicine Research. 128: 557-564.
Borne Y, Fagerberg B, Persson M, Sallsten G, Forsgard N, Hedblad B, et al. 2014. Cadmium exposure and incidence of diabetes mellitus-results from the malmo diet and cancer study. Plos One.9(11): 1-5.
Carattino MD, Peralta S, Coll CP, Naab F, Burlon A, Kreiner AJ, et al, 2004. Effects of long-term exposure to Cu2+ and Cd2+ on the pentose phosphate pathway dehydrogenase activities in the ovary of adult Bufo arenarum: possible role as biomarker for Cu2+ toxicity. Ecotoxicology and Environmental Safety. 57: 311–318.
Cicik B, Engin K, 2005. The effects of cadmium on levels of glucose in serum and glycogen reserves in the liver and muscle tissues of Cyprinus carpio (L., 1758).Turk J Vet Anim Sci. 29: 113-11.
Cotuk Y, Belivermis M, Kilic O, 2010. Environmental biology and pathophysiology of cadmium. IUFS Journal of Biology. 69(1): 1-5.
Gill M. 2014. Heavy metal stress inplants: a review. International Journal. 2(6): 1043-55.
Iskandar, Budianto WY, Suhartono E, 2017. Effect of cadmium exposure on increasing risk of diabetes melitus through the measurement of blood glucose level and liver glucokinase activity in rats. Berkala Kedokteran.13(2): 137-145
Kania N, Iskandar Thalib, Suhartono E, 2016. Chlorinative Index in Liver Toxicity Induced by Iron. International Journal of Pharmaceutical and Clinical Research. 8(9): 1300-1304
Komari N, Irawati U, Novita E. 2013. Kandungan kadmium dan seng pada ikan baung (Hemibagrus nemurus) di perairan Trisakti Banjarmasin Kalimantan Selatan. Sains dan Terapan Kimia. 7(1): 42-49.
Koyama I, Komine S, Iino N, Hokari S, Igarashi S, Alpers DA, Komoda T, 2001. α-Amylase expressed in human liver is encoded by the AMY-2B gene identified in tumorous tissues.Clinica Chimica Acta. 309: 73–83.
Lestarisa T, Alexandra FD, Jelita H, Suhartono E, 2016. Myeloperoxidase as an Indicator of Liver Cells Inflammation Induced by Mercury. International Journal of Pharmaceutical and Clinical Research. 8(11): 1516-1521
Sobha K, Poornima A, Harini P, Veeraiah K, 2007. A study on biochemical changes in the fresh waterfish, Catla catla (Hamilton) exposed to the heavymetal toxicant cadmium chloride. Kathmandu University Journal of Science Engineering and Technology. 1(4): 1-11.
Suhartono E, Iskandar, Santosa PB, 2015. Ameliorative effects of different parts of gemor (Nothaphoebe coriacea) on cadmium induced glucose metabolism alteration in vitro. Int J Pharm Pharm Sci. 7(11): 17-20
Xiaobing X, Gang W, Yanchun P, Ming-Gene T, Jimmy J, Hongqing F, 2005. The endogenous CXXC motif governs the cadmium sensitivity of the renal na+/glucose co-transporter. Journal of the American Society of Nephrology. 16: 1257–1265.
Zahedi S, Mirvaghefi A, Rafati M, Mehrpoosh M, 2012. Cadmium accumulation and biochemical parameters in juvenile Persian sturgeon, Acipenser persicus, upon sublethal cadmium exposure. 12(3): 1-9.
DOI: http://dx.doi.org/10.30742/jikw.v7i2.456
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Eko Suhartono
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Jurnal Ilmiah Kedokteran Wijaya Kusuma is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License